The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Biosynthetic pathways of pteridines and their association with phenotypic expression in vitro in normal and neoplastic pigment cells from goldfish.

The distribution of GTP-cyclohydrolase I, pyruvoyl tetrahydropterin (dysopropterin) synthase, and pyruvoyl tetrahydropterin reductase in goldfish erythrophores, melanophores, and erythrophoroma cells in vitro has been revealed by specific biochemical assays. The activity of pyruvoyl tetrahydropterin synthase in the erythrophores is nearly the same as that in rat kidney and pineal gland. Results of the simultaneous quantification of unconjugated pteridines (biopterin, sepiapterin, neopterin, and pterin) by HPLC indicate that the total amounts of these derivatives present in these cells and in the respective culture media are closely correlated with the activities of these enzymes. These findings imply that these cells are capable of the autonomous synthesis of pteridines, which most likely proceeds from GTP to 6-lactoyl-5,6,7,8-tetrahydropterin (reduced sepiapterin), via dihydroneopterin triphosphate and pyruvoyl tetrahydropterin, through reactions catalyzed by these enzymes. A comparison of pteridine metabolism between clones of the stem cell type and the yellow-pigmented clones induced from erythrophoroma cells suggests that brightly colored pigmentation involves two separate phases: the biosynthesis of pteridines and their deposition in the pigment organelles. The presence of the highly active pteridine-synthesizing enzymes in melanophores and melanogenic erythrophoroma cells strongly suggests a loose commitment to the expression of pigment phenotypes in this species.[1]


WikiGenes - Universities