The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Structure of rho factor: an RNA-binding domain and a separate region with strong similarity to proven ATP-binding domains.

The domain structure of rho protein, a transcription termination factor of Escherichia coli, was analyzed by oligonucleotide site-directed mutagenesis and chemical modification methods. The single cysteine at position 202, previously thought to be essential for rho function, was changed to serine or to glycine with no detectable effects on the protein's hexameric structure, RNA-binding ability, or ATPase, helicase, and transcription termination activities. A 151-residue amino-terminal fragment (N1), generated by hydroxylamine cleavage, and its complementary carboxyl-terminal fragment of 268 amino acids (N2) were extracted from NaDod-SO4/polyacrylamide gels and renatured. The N1 fragment binds poly(C) and mRNA corresponding to the rho-dependent terminator sequence trp t', but not RNA unrecognized by rho; hence, this small renaturable domain retains not only the binding ability but also the specificity of the native protein. Uncleaved rho renatures to regain its RNA-dependent ATPase activity, but neither N1 nor N2 exhibits any detectable ATP hydrolysis. Similarly, the two fragments, isolated separately but renatured together, are unable to hydrolyze ATP. Sequence homology to the alpha subunit of the E. coli F1 membrane ATPase, and to consensus elements of other nucleotide-binding proteins, strongly suggests a structural domain for ATP binding that begins after amino acid 164. The implications of discrete domains for RNA and nucleotide binding are discussed in the context of requirements for specific interactions between RNA-binding and ATP-hydrolysis sites during transcription termination.[1]


WikiGenes - Universities