The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Regulation of tropomyosin expression in the maturing ovary and in primary granulosa cell cultures.

Granulosa cell differentiation in vitro in response to gonadotropins is characterized by major changes in cell shape, cell aggregation, and the organization of microfilaments. These changes are associated with enhanced steroidogenesis in maturing granulosa-lutein cells. Since nonmuscle tropomyosin isoforms were implicated in stabilizing actin filaments, we studied the organization and expression of tropomyosin in differentiating primary cultures of rat granulosa cells and during ovarian folliculogenesis and luteinization. In unstimulated primary granulosa cell cultures tropomyosin was found mainly along stress fibers. In differentiating cells tropomyosin staining was diffuse with sometimes a subcortical organization. The changes in tropomyosin organization were accompanied by a pronounced decrease in the synthesis, translation in vitro, and mRNA levels of all the rat nonmuscle tropomyosin isoforms, with a greater reduction in the higher molecular weight isoforms than in the smaller isoforms. Similar results were obtained whether cells were stimulated to differentiate with gonadotropins, with cAMP, by culturing cells on an extracellular matrix, or by treatment with cytochalasin B. The effect of cytochalasin B was reversible; upon removal of the drug tropomyosin synthesis increased to near control levels, while that of proteins associated with luteinization decreased drastically. RNA isolated from ovaries with follicles at the preantral, preovulatory stage and from corpora lutea contained decreased tropomyosin mRNA levels during ovarian luteinization when the level of RNA for a key steroidogenic enzyme, cytochrome P-450 cholesterol side chain cleavage (P-450 scc), increased. The results suggest a physiological relevance for the low level of tropomyosin expression in the mechanisms which bring about the morphological and biochemical development and maturation of granulosa cells.[1]

References

 
WikiGenes - Universities