The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Purification and biochemical characterization of hepatic arylamine N-acetyltransferase from rapid and slow acetylator mice: identity with arylhydroxamic acid N,O-acyltransferase and N-hydroxyarylamine O-acetyltransferase.

An inbred mouse model for the human N-acetylation polymorphism has been used to investigate the biochemical basis for the arylamine N-acetylation polymorphism and the relationship between the cytosolic enzymes arylamine N-acetyltransferase (NAT), arylhydroxamic acid N,O-acyltransferase, and N-hydroxyarylamine O-acetyltransferase. Biochemical studies of partially purified NAT from rapid and slow acetylator mice revealed identical molecular weights of 31,500, activation energies of 21,000 cal/ mol, equivalent affinities for acetyl coenzyme A, broad pH optima, the presence of an active site sulfhydryl group, and similar behavior during purification with anion exchange, gel filtration, and hydrophobic interaction chromatography. The enzymes differed in inhibition by hydrogen peroxide and dithiobis(2-nitrobenzoic acid). These observations taken in conjunction with previous investigations indicate that the rapid and slow mouse NAT enzymes are isozymes with minimal structural differences. NATs from rapid and slow acetylator mice were purified more than 10,000-fold by the following sequence of methods: homogenization and fractional centrifugation, protamine sulfate precipitation, and chromatography on DEAE-Trisacryl M, Sephadex G-100, Amethopterin-AH-Sepharose 4B, butyl agarose, and Sephacryl S-200, with a 15-25% recovery. NAT from B6 mice was purified to greater than 95% purity, as judged by silver staining of sodium dodecyl sulfate-polyacrylamide gels. Although only NAT appeared to be subject to a genetic polymorphism as evidenced by N-acetylation activities in liver cytosol, the purified NAT protein possessed arylhydroxamic acid N,O-acyltransferase, N-hydroxyarylamine O-acetyltransferase, and NAT activities. Thus, the cytosolic N-acetyltransferase of mouse liver may catalyze N-, O-, and N,O-acetyltransfer reactions through a common acetylated intermediate of a single protein.[1]

References

 
WikiGenes - Universities