The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

CHEMBL320474     N-phenylhydroxylamine

Synonyms: ACMC-1C7E0, CCRIS 5062, LS-310, NCI-C60093, AG-D-06124, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of N-phenylhydroxylamine


High impact information on N-phenylhydroxylamine

  • Human polymorphic N-acetyltransferase (NAT2) catalyzes the N-acetylation of arylamine carcinogens and the metabolic activation of N-hydroxyarylamine and N-hydroxyarylamide carcinogens by O- and N,O-acetylation, respectively [1].
  • The N-hydroxyarylamine OAT activity also discriminated between two levels of activation, being significantly (P = 0.0002) higher (about twofold) in the rapid N-acetylator bladder cytosols, that correlated (r = 0.94) with the measured levels of NAT activity in each bladder cytosol [6].
  • Previous studies have shown that incubation of rat red blood cells in vitro with phenylhydroxylamine (50-300 microM) induces rapid splenic sequestration of the red cells on reintroduction to isologous rats [7].
  • We propose that the species responsible for the oxidation of the thiols to yield the thiyl free radicals in vivo and in vitro was the phenylhydronitroxide radical produced from the reaction of phenylhydroxylamine with oxyhemoglobin [8].
  • Purification and biochemical characterization of hepatic arylamine N-acetyltransferase from rapid and slow acetylator mice: identity with arylhydroxamic acid N,O-acyltransferase and N-hydroxyarylamine O-acetyltransferase [9].

Chemical compound and disease context of N-phenylhydroxylamine


Biological context of N-phenylhydroxylamine


Anatomical context of N-phenylhydroxylamine


Associations of N-phenylhydroxylamine with other chemical compounds


Gene context of N-phenylhydroxylamine

  • Both recombinant mouse NAT1 and NAT2 catalyzed the metabolic activation of N-hydroxyarylamine (O-acetylation) and N-hydroxyarylamide (N,O-acetylation) carcinogens [23].
  • The relative capacity of NAT1 versus NAT2 to catalyze activation varied with N-hydroxyarylamine substrate [24].
  • Four isoforms (HAST I and II, AST III and IV) are apparently responsible for the majority of N-hydroxyarylamine sulfation [25].
  • The lack of evidence for hepatic CYP-mediated metabolism of PPD is inconsistent with the hypothesis that this compound plays a causal role in the development of bladder cancer via a mode of action involving hepatic metabolism to an N-hydroxyarylamine [26].
  • Under reaction conditions that prevented the oxidative degradation of N-hydroxyaniline, this N-hydroxy arylamine was a substrate for AST IV [20].

Analytical, diagnostic and therapeutic context of N-phenylhydroxylamine


  1. Metabolic activation of N-hydroxyarylamines and N-hydroxyarylamides by 16 recombinant human NAT2 allozymes: effects of 7 specific NAT2 nucleic acid substitutions. Hein, D.W., Doll, M.A., Rustan, T.D., Ferguson, R.J. Cancer Res. (1995) [Pubmed]
  2. Metabolic activation of N-hydroxy-2-aminofluorene and N-hydroxy-2-acetylaminofluorene by monomorphic N-acetyltransferase (NAT1) and polymorphic N-acetyltransferase (NAT2) in colon cytosols of Syrian hamsters congenic at the NAT2 locus. Hein, D.W., Doll, M.A., Gray, K., Rustan, T.D., Ferguson, R.J. Cancer Res. (1993) [Pubmed]
  3. Involvement of Cys69 residue in the catalytic mechanism of N-hydroxyarylamine O-acetyltransferase of Salmonella typhimurium. Sequence similarity at the amino acid level suggests a common catalytic mechanism of acetyltransferase for S. typhimurium and higher organisms. Watanabe, M., Sofuni, T., Nohmi, T. J. Biol. Chem. (1992) [Pubmed]
  4. Contribution of aniline metabolites to aniline-induced methemoglobinemia. Harrison, J.H., Jollow, D.J. Mol. Pharmacol. (1987) [Pubmed]
  5. Biotransformation of hydroxylaminobenzene and aminophenol by Pseudomonas putida 2NP8 cells grown in the presence of 3-nitrophenol. Zhao, J.S., Singh, A., Huang, X.D., Ward, O.P. Appl. Environ. Microbiol. (2000) [Pubmed]
  6. Polymorphic expression of acetyl coenzyme A-dependent arylamine N-acetyltransferase and acetyl coenzyme A-dependent O-acetyltransferase-mediated activation of N-hydroxyarylamines by human bladder cytosol. Kirlin, W.G., Trinidad, A., Yerokun, T., Ogolla, F., Ferguson, R.J., Andrews, A.F., Brady, P.K., Hein, D.W. Cancer Res. (1989) [Pubmed]
  7. Identification of free radicals produced in rat erythrocytes exposed to hemolytic concentrations of phenylhydroxylamine. Bradshaw, T.P., McMillan, D.C., Crouch, R.K., Jollow, D.J. Free Radic. Biol. Med. (1995) [Pubmed]
  8. Aniline-, phenylhydroxylamine-, nitrosobenzene-, and nitrobenzene-induced hemoglobin thiyl free radical formation in vivo and in vitro. Maples, K.R., Eyer, P., Mason, R.P. Mol. Pharmacol. (1990) [Pubmed]
  9. Purification and biochemical characterization of hepatic arylamine N-acetyltransferase from rapid and slow acetylator mice: identity with arylhydroxamic acid N,O-acyltransferase and N-hydroxyarylamine O-acetyltransferase. Mattano, S.S., Land, S., King, C.M., Weber, W.W. Mol. Pharmacol. (1989) [Pubmed]
  10. Role of aniline metabolites in aniline-induced hemolytic anemia. Harrison, J.H., Jollow, D.J. J. Pharmacol. Exp. Ther. (1986) [Pubmed]
  11. Bacterial conversion of hydroxylamino aromatic compounds by both lyase and mutase enzymes involves intramolecular transfer of hydroxyl groups. Nadeau, L.J., He, Z., Spain, J.C. Appl. Environ. Microbiol. (2003) [Pubmed]
  12. Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonas putida ZWL73. Xiao, Y., Wu, J.F., Liu, H., Wang, S.J., Liu, S.J., Zhou, N.Y. Appl. Microbiol. Biotechnol. (2006) [Pubmed]
  13. N-Hydroxyamide metabolites of lidocaine. Synthesis, characterization, quantitation, and mutagenic potential. Nelson, S.D., Nelson, W.L., Trager, W.F. J. Med. Chem. (1978) [Pubmed]
  14. Phenylhydroxylamine: role in aniline-associated splenic oxidative stress and induction of subendocardial necrosis. Khan, M.F., Green, S.M., Ansari, G.A., Boor, P.J. Toxicol. Sci. (1998) [Pubmed]
  15. A pharmacokinetic model to predict exposure of the bladder epithelium to urinary N-hydroxyarylamine carcinogens as a function of urine pH, voiding interval, and resorption. Young, J.F., Kadlubar, F.F. Drug Metab. Dispos. (1982) [Pubmed]
  16. Acetylator genotype-dependent expression of arylamine N-acetyltransferase and N-hydroxyarylamine O-acetyltransferase in Syrian inbred hamster intestine and colon. Identity with the hepatic acetylation polymorphism. Ogolla, F., Ferguson, R.J., Kirlin, W.G., Trinidad, A., Andrews, A.F., Mpezo, M., Hein, D.W. Drug Metab. Dispos. (1990) [Pubmed]
  17. Nitrobenzene carcinogenicity in animals and human hazard evaluation. Holder, J.W. Toxicology and industrial health. (1999) [Pubmed]
  18. Formation and disposition of N-hydroxylated metabolites of aniline and nitrobenzene by isolated rat hepatocytes. Blaauboer, B.J., Van Holsteijn, C.W. Xenobiotica (1983) [Pubmed]
  19. Participation of cytochrome P-450 in the reduction of nitro compounds by rat liver microsomes. Harada, N., Omura, T. J. Biochem. (1980) [Pubmed]
  20. Oxidation-dependent inactivation of aryl sulfotransferase IV by primary N-hydroxy arylamines during in vitro assays. King, R.S., Duffel, M.W. Carcinogenesis (1997) [Pubmed]
  21. Sensitive method for the detection of mutagenic nitroarenes and aromatic amines: new derivatives of Salmonella typhimurium tester strains possessing elevated O-acetyltransferase levels. Watanabe, M., Ishidate, M., Nohmi, T. Mutat. Res. (1990) [Pubmed]
  22. Toxicokinetics and metabolism of aniline and 4-chloroaniline in medaka (Oryzias latipes). Bradbury, S.P., Dady, J.M., Fitzsimmons, P.N., Voit, M.M., Hammermeister, D.E., Erickson, R.J. Toxicol. Appl. Pharmacol. (1993) [Pubmed]
  23. Cloning, sequencing, and recombinant expression of NAT1, NAT2, and NAT3 derived from the C3H/HeJ (rapid) and A/HeJ (slow) acetylator inbred mouse: functional characterization of the activation and deactivation of aromatic amine carcinogens. Fretland, A.J., Doll, M.A., Gray, K., Feng, Y., Hein, D.W. Toxicol. Appl. Pharmacol. (1997) [Pubmed]
  24. Metabolic activation of aromatic and heterocyclic N-hydroxyarylamines by wild-type and mutant recombinant human NAT1 and NAT2 acetyltransferases. Hein, D.W., Rustan, T.D., Ferguson, R.J., Doll, M.A., Gray, K. Arch. Toxicol. (1994) [Pubmed]
  25. Biochemistry of cytosolic sulfotransferases involved in bioactivation. Falany, C.N., Wilborn, T.W. Adv. Pharmacol. (1994) [Pubmed]
  26. Lack of evidence for metabolism of p-phenylenediamine by human hepatic cytochrome P450 enzymes. Stanley, L.A., Skare, J.A., Doyle, E., Powrie, R., D'Angelo, D., Elcombe, C.R. Toxicology (2005) [Pubmed]
  27. Biotransformation of nitrosobenzene, phenylhydroxylamine, and aniline in the isolated perfused rat liver. Eyer, P., Kampffmeyer, H., Maister, H., Rösch-Oehme, E. Xenobiotica (1980) [Pubmed]
  28. N-hydroxyarylamine O-acetyltransferase in hamster liver: identity with arylhydroxamic acid N,O-acetyltransferase and arylamine N-acetyltransferase. Saito, K., Shinohara, A., Kamataki, T., Kato, R. J. Biochem. (1986) [Pubmed]
WikiGenes - Universities