A complex pattern of sensitivity to simple monofunctional alkylating agents exists amongst the rad mutants of Saccharomyces cerevisiae.
The radiation-sensitive rad mutants of the yeast Saccharomyces cerevisiae exhibit a complex pattern of sensitivity to simple monofunctional alkylating agents. The RAD1, RAD2, RAD4 and RAD14 genes of the RAD3 epistasis group are implicated in the repair of ethylations to DNA. The RAD3, RAD10 and RAD16 genes of this group are not involved. The RAD4 and RAD14 genes have a particular role in repair following exposure to those ethylating agents that preferentially alkylate oxygen, but not to those that preferentially ethylate nitrogen. The RAD1 and RAD2 genes are involved in the repair of damage induced by all the ethylating agents used except EMS. The mutants in this group that are sensitive to ENU were not sensitive to MNU, suggesting that nucleotide excision operates on ethylations but not on methylations. In the RAD6 group, the RAD6 and RAD18 genes are involved in DNA repair after exposure to all the alkylating agents tested, whereas RAD8 appears to have a role in the repair of O-alkylations but not N-alkylations. RAD9 operates in the repair of methylations and ethylations, but does not influence events after exposure to EMS. In the RAD52 group, the mutants tested were sensitive to ENU and DES. Thus some members of all three epistasis groups are involved in the repair of alkylations to DNA.[1]References
- A complex pattern of sensitivity to simple monofunctional alkylating agents exists amongst the rad mutants of Saccharomyces cerevisiae. Cooper, A.J., Waters, R. Mol. Gen. Genet. (1987) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg