The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

RAD1  -  Rad1p

Saccharomyces cerevisiae S288c

Synonyms: DNA repair protein RAD1, YPL022W
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of RAD1

  • The collected experiments reveal a profound toxicity of strand breaks with irreparable 3' blocking lesions, and extend the function of the Rad1/Rad10 salvage pathway to 3'-phosphates [1].
  • None of the mutants demonstrated appreciable change in sensitivity to JM216 presumably as a consequence of a lack of resistance of the wild-type strain, whereas a moderate increase in sensitivity to JM335 was observed for most of the mutants, and hypersensitivity to BBR3464 was observed only in rad1 and -3 [2].

High impact information on RAD1


Biological context of RAD1


Anatomical context of RAD1

  • Using the 'two-hybrid' genetic assay system we now report that Rad1 and Rad10 proteins are subunits of a specific complex in the cell nucleus [12].
  • (4) Leaky alleles of rad1, rad3 and rad14 show a very marked difference in repair rates of the two lesions, rather like the human XPA revertant cell line XP129 and the Chinese hamster mutants UV61 and V-H1 [13].

Associations of RAD1 with chemical compounds

  • The source of these phosphates remains enigmatic, however, because apn1 tpp1 rad1 slow growth could be correlated with neither the presence of a yeast delta-lyase, the activity of the 3'-phosphate-generating enzyme Tdp1, nor levels of endogenous oxidation [1].
  • The yeast RAD2, but not RAD1, gene is involved in the transcription-coupled repair of thymine glycols [14].
  • By hydroxylamine mutagenesis, we have identified a rad1 mutant allele whose encoded protein fails to complex with RAD10 [15].
  • The inactivation of Rad1 or Rad10 in GCR mutator strains also slightly enhanced methyl methanesulfonate sensitivity [16].
  • Deleting uracil glycosylase suppressed both tpp1 apn1 rad1 and apn1 apn2 rad1 growth defects by reducing the abasic site burden [17].

Physical interactions of RAD1

  • The RAD1/RAD10 complex is highly stable, being refractory to 1 M NaCl and to low concentrations of SDS [15].
  • Studies on rad1 delta rad52-8 strains show that these mutations interact synergistically in the presence or absence of HOT1, resulting in low levels of recombination [18].

Other interactions of RAD1

  • In fact, apn1 apn2 rad1 triple mutants can form microcolonies of approximately 300 cells [19].
  • RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination [20].
  • In Saccharomyces cerevisiae, RAD1 and RAD52 are required for alternate pathways of mitotic recombination [21].
  • These results suggest that a RAD1-dependent function is involved in the processing of damaged DNA that results from the loss of Top3 activity, targeting such DNA for repair by recombination [22].
  • Removal of one nonhomologous DNA end during gene conversion by a RAD1- and MSH2-independent pathway [23].

Analytical, diagnostic and therapeutic context of RAD1


  1. The role of yeast DNA 3'-phosphatase Tpp1 and rad1/Rad10 endonuclease in processing spontaneous and induced base lesions. Karumbati, A.S., Deshpande, R.A., Jilani, A., Vance, J.R., Ramotar, D., Wilson, T.E. J. Biol. Chem. (2003) [Pubmed]
  2. Sensitivity to cisplatin and platinum-containing compounds of Schizosaccharomyces pombe rad mutants. Perego, P., Zunino, F., Carenini, N., Giuliani, F., Spinelli, S., Howell, S.B. Mol. Pharmacol. (1998) [Pubmed]
  3. Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Kirkpatrick, D.T., Petes, T.D. Nature (1997) [Pubmed]
  4. The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI. Bussey, H., Storms, R.K., Ahmed, A., Albermann, K., Allen, E., Ansorge, W., Araujo, R., Aparicio, A., Barrell, B., Badcock, K., Benes, V., Botstein, D., Bowman, S., Brückner, M., Carpenter, J., Cherry, J.M., Chung, E., Churcher, C., Coster, F., Davis, K., Davis, R.W., Dietrich, F.S., Delius, H., DiPaolo, T., Hani, J. Nature (1997) [Pubmed]
  5. Holliday junction cleavage by yeast Rad1 protein. Habraken, Y., Sung, P., Prakash, L., Prakash, S. Nature (1994) [Pubmed]
  6. Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease. Bardwell, A.J., Bardwell, L., Tomkinson, A.E., Friedberg, E.C. Science (1994) [Pubmed]
  7. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Fishman-Lobell, J., Haber, J.E. Science (1992) [Pubmed]
  8. RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Schiestl, R.H., Prakash, S. Mol. Cell. Biol. (1988) [Pubmed]
  9. Role of the Rad1 and Rad10 proteins in nucleotide excision repair and recombination. Davies, A.A., Friedberg, E.C., Tomkinson, A.E., Wood, R.D., West, S.C. J. Biol. Chem. (1995) [Pubmed]
  10. Dependence on RAD52 and RAD1 for anticancer drug resistance mediated by inactivation of mismatch repair genes. Durant, S.T., Morris, M.M., Illand, M., McKay, H.J., McCormick, C., Hirst, G.L., Borts, R.H., Brown, R. Curr. Biol. (1999) [Pubmed]
  11. Single strand and double strand DNA damage-induced reciprocal recombination in yeast. Dependence on nucleotide excision repair and RAD1 recombination. Saffran, W.A., Greenberg, R.B., Thaler-Scheer, M.S., Jones, M.M. Nucleic Acids Res. (1994) [Pubmed]
  12. Yeast DNA recombination and repair proteins Rad1 and Rad10 constitute a complex in vivo mediated by localized hydrophobic domains. Bardwell, A.J., Bardwell, L., Johnson, D.K., Friedberg, E.C. Mol. Microbiol. (1993) [Pubmed]
  13. Repair of 6-4 photoproducts and cyclobutane pyrimidine dimers in rad mutants of Saccharomyces cerevisiae. McCready, S. Mutat. Res. (1994) [Pubmed]
  14. The yeast RAD2, but not RAD1, gene is involved in the transcription-coupled repair of thymine glycols. Leadon, S.A., Barbee, S.L., Dunn, A.B. Mutat. Res. (1995) [Pubmed]
  15. Specific complex formation between proteins encoded by the yeast DNA repair and recombination genes RAD1 and RAD10. Bailly, V., Sommers, C.H., Sung, P., Prakash, L., Prakash, S. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  16. The Rad1-Rad10 complex promotes the production of gross chromosomal rearrangements from spontaneous DNA damage in Saccharomyces cerevisiae. Hwang, J.Y., Smith, S., Myung, K. Genetics (2005) [Pubmed]
  17. Abrogation of the Chk1-Pds1 checkpoint leads to tolerance of persistent single-strand breaks in Saccharomyces cerevisiae. Karumbati, A.S., Wilson, T.E. Genetics (2005) [Pubmed]
  18. Genetic control of RNA polymerase I-stimulated recombination in yeast. Zehfus, B.R., McWilliams, A.D., Lin, Y.H., Hoekstra, M.F., Keil, R.L. Genetics (1990) [Pubmed]
  19. Endogenous DNA abasic sites cause cell death in the absence of Apn1, Apn2 and Rad1/Rad10 in Saccharomyces cerevisiae. Guillet, M., Boiteux, S. EMBO J. (2002) [Pubmed]
  20. RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination. Schiestl, R.H., Prakash, S. Mol. Cell. Biol. (1990) [Pubmed]
  21. Rsp5, a ubiquitin-protein ligase, is involved in degradation of the single-stranded-DNA binding protein rfa1 in Saccharomyces cerevisiae. Erdeniz, N., Rothstein, R. Mol. Cell. Biol. (2000) [Pubmed]
  22. Genome rearrangement in top3 mutants of Saccharomyces cerevisiae requires a functional RAD1 excision repair gene. Bailis, A.M., Arthur, L., Rothstein, R. Mol. Cell. Biol. (1992) [Pubmed]
  23. Removal of one nonhomologous DNA end during gene conversion by a RAD1- and MSH2-independent pathway. Colaiácovo, M.P., Pâques, F., Haber, J.E. Genetics (1999) [Pubmed]
  24. Use of yeast for detection of endogenous abasic lesions, their source, and their repair. Boiteux, S., Guillet, M. Meth. Enzymol. (2006) [Pubmed]
  25. Molecular cloning and nucleotide sequence analysis of the Saccharomyces cerevisiae RAD1 gene. Yang, E., Friedberg, E.C. Mol. Cell. Biol. (1984) [Pubmed]
  26. Purification and characterization of the Saccharomyces cerevisiae RAD1/RAD10 endonuclease. Sung, P., Reynolds, P., Prakash, L., Prakash, S. J. Biol. Chem. (1993) [Pubmed]
  27. Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome. Guzder, S.N., Sung, P., Prakash, L., Prakash, S. J. Biol. Chem. (1996) [Pubmed]
  28. Cloning and characterization of the yeast RAD1 homolog gene (mus-38) from Neurospora crassa: evidence for involvement in nucleotide excision repair. Hatakeyama, S., Ito, Y., Shimane, A., Ishii, C., Inoue, H. Curr. Genet. (1998) [Pubmed]
WikiGenes - Universities