The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Evidence for the release of newly acquired ascorbate and alpha-aminoisobutyric acid from the cytosol of adrenomedullary chromaffin cells through specific transporter mechanisms.

Primary cultures of bovine adrenomedullary cells actively take up ascorbic acid and alpha-aminoisobutyric acid (AIB). Following a brief incubation with L-[14C] ascorbic acid and alpha-[methyl-3H]aminoisobutyric acid, cells stimulated with the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium iodide or by membrane depolarization with high [K+] or veratridine released newly acquired ascorbic acid (NA-ascorbate) and AIB. NA-ascorbate and endogenous catecholamines are differentially released under a variety of conditions suggesting that release of both substances cannot originate from the same subcellular compartment. In contrast, the release profile for NA-ascorbate and AIB, a putative cytosolic marker, suggest that both of these molecules are released from a cytosolic compartment. Cells permeabilized with the detergent digitonin release catecholamines only in the presence of external Ca2+, whereas release of NA-ascorbate and AIB is Ca2+-independent and time- and detergent concentration-dependent. If the osmolality of the external medium is made either hyper- or hypoosmotic, 1,1-dimethyl-4-phenylpiperazinium iodide-induced release of endogenous catecholamines is inhibited. Release of NA-ascorbate and AIB, however, is progressively inhibited with increasing osmolality and enhanced with decreasing osmolality. Furthermore, differential release of NA-ascorbate and AIB as compared to soluble acetylcholinesterase, which is apparently released form the cisternae of the endoplasmic reticulum, was also observed. To determine the mechanism by which NA-ascorbate and AIB are released from the cell, the requirements for their maximal release were investigated. Release of NA-ascorbate and AIB was sensitive to inhibitors (both metabolic and transport) and to changes in the external ionic environment. The metabolic inhibitors carbonyl cyanide p-trifluoromethoxyphenylhydrazone and KCN (when incubated simultaneously with 2-deoxyglucose) inhibited NA-ascorbate and AIB release by greater than 75%. In contrast, the Na+-K+-ATPase inhibitor ouabain enhanced veratridine-induced release of NA-ascorbate by nearly 100% and had an even greater effect on AIB release. Changes in the external ionic environment (i.e. Na+ and/or Cl- substitution) inhibited both NA-ascorbate and AIB release to varying degrees. Substitution of Cl- by various anions inhibited NA-ascorbate and AIB release to a much greater degree than endogenous catecholamine release. Complete substitution of NaCl with sucrose inhibited release of NA-ascorbate and AIB release by greater than 80%, while Na+ substituted with Li+ inhibited release of all three molecules by about 50%.(ABSTRACT TRUNCATED AT 400 WORDS)[1]

References

 
WikiGenes - Universities