Labeling of functionally sensitive sulfhydryl-containing domains of acetylcholine receptor from Torpedo californica membranes.
N-(1-Pyrene)maleimide, a fluorescent, lipophilic, alkylating agent, was used as a probe for the nicotinic acetylcholine receptor (AChR). Preincubation with N-(1-pyrene)maleimide under nonreducing conditions inhibits agonist-induced cation permeability of AChR-enriched membranes. This inhibition is dependent on the concentration of N-(1-pyrene)maleimide used. This correlation was also exhibited by resonance energy transfer of tryptophan fluorescence to N-(1-pyrene)maleimide and by the labeling stoichiometries. However, agonist-induced desensitization, as based on the time-dependent inhibition of alpha-bungarotoxin binding upon preincubation with the agonist carbamylcholine, was unaffected by N-(1-pyrene)maleimide. Alkylation of the AChR by N-(1-pyrene)maleimide is pH-dependent with an apparent pKa of 7.5 and is unaffected by preincubation with carbamylcholine, alpha-bungarotoxin, tubocurarine, or decamethonium. Preincubation with a 25-fold molar excess of N-ethylmaleimide partially protects against N-(1-pyrene)maleimide, yet simultaneous incubation with an equimolar concentration does not protect. In contrast, simultaneous incubation with equimolar concentrations of phenylmaleimide or naphthylmaleimide inhibited N-(1-pyrene)maleimide alkylation by 52 and 67%, respectively. Each AChR subunit is labeled by N-(1-pyrene)maleimide. Prior alkylation with N-ethylmaleimide does not alter the labeling profile but lowers the amount of labeling of all subunits. Reductive methylation of membranes under conditions which dimethylate all or most protein amino groups does not inhibit alkylation by N-(1-pyrene)maleimide. The above results, as well as amino acid analysis of N-(1-pyrene)maleimide-alkylated receptor, indicate that a homologous class of cysteines, which reside in each subunit within the AChR domain embedded in the membrane, are involved in the reaction with N-(1-pyrene)maleimide.[1]References
- Labeling of functionally sensitive sulfhydryl-containing domains of acetylcholine receptor from Torpedo californica membranes. Clarke, J.H., Martinez-Carrion, M. J. Biol. Chem. (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg