The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Contribution of formaldehyde to respiratory cancer.

This article reviews the available data on the carcinogenicity of formaldehyde from experimental and epidemiologic studies and makes recommendations for further research. Two definitive chronic inhalation bioassays on rodents have demonstrated that formaldehyde produces nasal cancer in rats and mice at 14 ppm and in rats at 6 ppm, which is within the domain of present permissible human exposure (8-hr time-weighted average of 3 ppm, a 5 ppm ceiling, and a 10 ppm short-term exposure limit). Biochemical and physiologic studies in rats have shown that inhaled formaldehyde can depress respiration, inhibit mucociliary clearance, stimulate cell proliferation, and crosslink DNA and protein in the nasal mucosa. No deaths from nasal cancer have been reported in epidemiologic studies of cohorts exposed to formaldehyde, but three case-control studies suggest the possibility of increased risk. Although excesses of lung cancer deaths have been observed in some studies at industrial plants with formaldehyde exposure, uncertainties in interpretation limit the evaluation of these findings. Excess cancers of the brain and of lymphatic and hematopoietic tissues have been reported in certain studies of industrial groups and in most studies of formaldehyde-exposed professionals, but whether these excesses are related to formaldehyde exposure is not known. Several properties of formaldehyde pose unique problems for future research: the mechanisms responsible for its nonlinear response; its probable mechanism of carcinogenic action as a cross-linking agent; its formation in tissues as a normal metabolite; its possible action as a promoter and/or a cocarcinogen; and the importance of glutathione as a host defense at low exposure.[1]

References

  1. Contribution of formaldehyde to respiratory cancer. Nelson, N., Levine, R.J., Albert, R.E., Blair, A.E., Griesemer, R.A., Landrigan, P.J., Stayner, L.T., Swenberg, J.A. Environ. Health Perspect. (1986) [Pubmed]
 
WikiGenes - Universities