The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Nasal Mucosa

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Nasal Mucosa

  • Patients with two abnormal CFTR alleles were further evaluated for unrecognized cystic fibrosis-related lung disease, and both base-line and CFTR-mediated ion transport were measured in the nasal mucosa [1].
  • Therefore, we evaluated repeat administration of an adenovirus vector to the nasal epithelium of patients with CF with five escalating doses of up to 10(10) infectious units [2].
  • Three cases of relapse (two in the allopurinol group and one in the placebo group) at the nasal mucosa (mucosal leishmaniasis) had occurred by the end of 12 months of follow-up [3].
  • After surgical removal of this ganglion, the content of both VIP and choline acetyltransferase (acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6), a specific marker for cholinergic neurons, was decreased to about 70-80% in the nasal mucosa [4].
  • Animals previously primed by HSV infection and subsequently given IL-10 DNA via the nasal mucosa, showed diminished Ag-induced delayed type hypersensitivity reactions for up to 5 wk posttreatment [5].
 

Psychiatry related information on Nasal Mucosa

 

High impact information on Nasal Mucosa

 

Chemical compound and disease context of Nasal Mucosa

 

Biological context of Nasal Mucosa

 

Anatomical context of Nasal Mucosa

 

Associations of Nasal Mucosa with chemical compounds

  • Eleven patients received cocaine hydrochloride as a 10% solution (1.5 mg/kg) applied topically to the nasal mucosa before nasotracheal intubation [27].
  • We speculate that these properties configure human nasal epithelium to behave as an osmotic sensor, transducing information about luminal solutions to the airway wall [28].
  • In contrast to normal nasal epithelium, the apical membrane in CF epithelia was not Cl- permselective and was not responsive to isoproterenol [29].
  • CFTR and differentiation markers expression in non-CF and delta F 508 homozygous CF nasal epithelium [30].
  • Vasoactive intestinal polypeptide and cholinergic mechanisms in cat nasal mucosa: studies on choline acetyltransferase and release of vasoactive intestinal polypeptide [4].
 

Gene context of Nasal Mucosa

  • The evidence shows that Pax6 has distinct roles in the nasal epithelium and the principal tissue components of the embryonic eye, acting directly and cell autonomously in the optic cup and lens [31].
  • To evaluate the role of eotaxin in eosinophilic inflammation in nasal mucosa, we investigated the levels of eosinophil chemoattractants in nasal lavage fluids obtained after antigen challenge, compared with eosinophil counts and eosinophil protein X (EPX) levels [32].
  • Thus human nasal epithelium may be a major source of IL-1 alpha, IL-6, and IL-8 in allergic and nonallergic rhinitis [33].
  • RESULTS: In control nasal mucosa alcian blue/periodic acid-Schiff- and MUC5AC-stained areas were 18.40% +/- 1.31% and 21.89% +/- 1.43%, respectively [34].
  • It is concluded that the MUC2 gene is expressed at three- to four-fold higher levels in CF nasal mucosa than in non-CF nasal tissue and that it is expressed in a variety of cells additional to submucosal mucus-secreting glands [35].
 

Analytical, diagnostic and therapeutic context of Nasal Mucosa

References

  1. Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. Cohn, J.A., Friedman, K.J., Noone, P.G., Knowles, M.R., Silverman, L.M., Jowell, P.S. N. Engl. J. Med. (1998) [Pubmed]
  2. Repeat administration of an adenovirus vector encoding cystic fibrosis transmembrane conductance regulator to the nasal epithelium of patients with cystic fibrosis. Zabner, J., Ramsey, B.W., Meeker, D.P., Aitken, M.L., Balfour, R.P., Gibson, R.L., Launspach, J., Moscicki, R.A., Richards, S.M., Standaert, T.A. J. Clin. Invest. (1996) [Pubmed]
  3. Inefficacy of allopurinol as monotherapy for Colombian cutaneous leishmaniasis. A randomized, controlled trial. Velez, I., Agudelo, S., Hendrickx, E., Puerta, J., Grogl, M., Modabber, F., Berman, J. Ann. Intern. Med. (1997) [Pubmed]
  4. Vasoactive intestinal polypeptide and cholinergic mechanisms in cat nasal mucosa: studies on choline acetyltransferase and release of vasoactive intestinal polypeptide. Lundberg, J.M., Anggård, A., Emson, P., Fahrenkrug, J., Hökfelt, T. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  5. Distribution fate and mechanism of immune modulation following mucosal delivery of plasmid DNA encoding IL-10. Chun, S., Daheshia, M., Lee, S., Eo, S.K., Rouse, B.T. J. Immunol. (1999) [Pubmed]
  6. The cyanide-metabolizing enzyme rhodanese in human nasal respiratory mucosa. Lewis, J.L., Rhoades, C.E., Gervasi, P.G., Griffith, W.C., Dahl, A.R. Toxicol. Appl. Pharmacol. (1991) [Pubmed]
  7. The nasal mucosa of children with nocturnal enuresis before and after treatment with 1-deamino 8-D-arginine vasopressin spray. Li Volti, S., Allegra, E., Iozzo, D., Palmeri, S., Garozzo, R., Garozzo, A. Int. J. Pediatr. Otorhinolaryngol. (2001) [Pubmed]
  8. Odorant receptors instruct functional circuitry in the mouse olfactory bulb. Belluscio, L., Lodovichi, C., Feinstein, P., Mombaerts, P., Katz, L.C. Nature (2002) [Pubmed]
  9. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Parker, S.B., Eichele, G., Zhang, P., Rawls, A., Sands, A.T., Bradley, A., Olson, E.N., Harper, J.W., Elledge, S.J. Science (1995) [Pubmed]
  10. Molecular cloning of odorant-binding protein: member of a ligand carrier family. Pevsner, J., Reed, R.R., Feinstein, P.G., Snyder, S.H. Science (1988) [Pubmed]
  11. Cocaine: plasma concentrations after intranasal application in man. Van Dyke, C., Barash, P.G., Jatlow, P., Byck, R. Science (1976) [Pubmed]
  12. Effect of experimental rhinovirus 39 infection on the nasal response to histamine and cold air challenges in allergic and nonallergic subjects. Doyle, W.J., Skoner, D.P., Seroky, J.T., Fireman, P., Gwaltney, J.M. J. Allergy Clin. Immunol. (1994) [Pubmed]
  13. Enhanced expression of high-affinity IgE receptor (Fc epsilon RI) alpha chain in human allergen-induced rhinitis with co-localization to mast cells, macrophages, eosinophils, and dendritic cells. Rajakulasingam, K., Durham, S.R., O'Brien, F., Humbert, M., Barata, L.T., Reece, L., Kay, A.B., Grant, J.A. J. Allergy Clin. Immunol. (1997) [Pubmed]
  14. A double-blind, placebo controlled, dose ranging study to evaluate the safety and biological efficacy of the lipid-DNA complex GR213487B in the nasal epithelium of adult patients with cystic fibrosis. Knowles, M.R., Noone, P.G., Hohneker, K., Johnson, L.G., Boucher, R.C., Efthimiou, J., Crawford, C., Brown, R., Schwartzbach, C., Pearlman, R. Hum. Gene Ther. (1998) [Pubmed]
  15. The effect of nasal steroid aqueous spray on nasal complaint scores and cellular infiltrates in the nasal mucosa of patients with nonallergic, noninfectious perennial rhinitis. Blom, H.M., Godthelp, T., Fokkens, W.J., KleinJan, A., Mulder, P.G., Rijntjes, E. J. Allergy Clin. Immunol. (1997) [Pubmed]
  16. Functional evidence of CFTR gene transfer in nasal epithelium of cystic fibrosis mice in vivo following luminal application of DNA complexes targeted to the serpin-enzyme complex receptor. Ziady, A.G., Kelley, T.J., Milliken, E., Ferkol, T., Davis, P.B. Mol. Ther. (2002) [Pubmed]
  17. Gastrin-releasing peptide in human nasal mucosa. Baraniuk, J.N., Lundgren, J.D., Goff, J., Peden, D., Merida, M., Shelhamer, J., Kaliner, M. J. Clin. Invest. (1990) [Pubmed]
  18. Isolation and characterization of an olfactory receptor protein for odorant pyrazines. Pevsner, J., Trifiletti, R.R., Strittmatter, S.M., Snyder, S.H. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  19. Metabolic activation of phenacetin in rat nasal mucosa: dose-dependent binding to the glands of Bowman. Brittebo, E.B. Cancer Res. (1987) [Pubmed]
  20. T cell phenotypes of the normal nasal mucosa: induction of Th2 cytokines and CCR3 expression by IL-4. Till, S., Jopling, L., Wachholz, P., Robson, R., Qin, S., Andrew, D., Wu, L., van Neerven, J., Williams, T., Durham, S., Sabroe, I. J. Immunol. (2001) [Pubmed]
  21. Ibuprofen augments bradykinin-induced glycoconjugate secretion by human nasal mucosa in vivo. Baraniuk, J.N., Silver, P.B., Kaliner, M.A., Barnes, P.J. J. Allergy Clin. Immunol. (1992) [Pubmed]
  22. Widespread expression of human alpha 1-antitrypsin in transgenic mice revealed by in situ hybridization. Koopman, P., Povey, S., Lovell-Badge, R.H. Genes Dev. (1989) [Pubmed]
  23. Rapid secretion of prestored interleukin 8 from Weibel-Palade bodies of microvascular endothelial cells. Utgaard, J.O., Jahnsen, F.L., Bakka, A., Brandtzaeg, P., Haraldsen, G. J. Exp. Med. (1998) [Pubmed]
  24. Comparative carcinogenesis by hydroxylated nitrosopropylamines in Syrian hamsters. Lijinsky, W., Knutsen, G.L., Kovatch, R.M. J. Natl. Cancer Inst. (1985) [Pubmed]
  25. Human cytochrome P450 CYP2A13: predominant expression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Su, T., Bao, Z., Zhang, Q.Y., Smith, T.J., Hong, J.Y., Ding, X. Cancer Res. (2000) [Pubmed]
  26. Accumulation and persistence of DNA adducts in respiratory tissue of rats following multiple administrations of the tobacco specific carcinogen 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone. Belinsky, S.A., White, C.M., Boucheron, J.A., Richardson, F.C., Swenberg, J.A., Anderson, M. Cancer Res. (1986) [Pubmed]
  27. Is cocaine a sympathetic stimulant during general anesthesia? Barash, P.G., Kopriva, C.J., Langou, R., VanDyke, C., Jatlow, P., Stahl, A., Byck, R. JAMA (1980) [Pubmed]
  28. Selective response of human airway epithelia to luminal but not serosal solution hypertonicity. Possible role for proximal airway epithelia as an osmolality transducer. Willumsen, N.J., Davis, C.W., Boucher, R.C. J. Clin. Invest. (1994) [Pubmed]
  29. Abnormal apical cell membrane in cystic fibrosis respiratory epithelium. An in vitro electrophysiologic analysis. Cotton, C.U., Stutts, M.J., Knowles, M.R., Gatzy, J.T., Boucher, R.C. J. Clin. Invest. (1987) [Pubmed]
  30. CFTR and differentiation markers expression in non-CF and delta F 508 homozygous CF nasal epithelium. Dupuit, F., Kälin, N., Brézillon, S., Hinnrasky, J., Tümmler, B., Puchelle, E. J. Clin. Invest. (1995) [Pubmed]
  31. Multiple functions for Pax6 in mouse eye and nasal development. Quinn, J.C., West, J.D., Hill, R.E. Genes Dev. (1996) [Pubmed]
  32. The kinetics of allergen-induced eotaxin level in nasal lavage fluid: its key role in eosinophil recruitment in nasal mucosa. Terada, N., Hamano, N., Kim, W.J., Hirai, K., Nakajima, T., Yamada, H., Kawasaki, H., Yamashita, T., Kishi, H., Nomura, T., Numata, T., Yoshie, O., Konno, A. Am. J. Respir. Crit. Care Med. (2001) [Pubmed]
  33. Synthesis of interleukin-1 alpha, interleukin-6, and interleukin-8 by cultured human nasal epithelial cells. Kenney, J.S., Baker, C., Welch, M.R., Altman, L.C. J. Allergy Clin. Immunol. (1994) [Pubmed]
  34. Relation of epidermal growth factor receptor expression to goblet cell hyperplasia in nasal polyps. Burgel, P.R., Escudier, E., Coste, A., Dao-Pick, T., Ueki, I.F., Takeyama, K., Shim, J.J., Murr, A.H., Nadel, J.A. J. Allergy Clin. Immunol. (2000) [Pubmed]
  35. Localization and up-regulation of mucin (MUC2) gene expression in human nasal biopsies of patients with cystic fibrosis. Li, D., Wang, D., Majumdar, S., Jany, B., Durham, S.R., Cottrell, J., Caplen, N., Geddes, D.M., Alton, E.W., Jeffery, P.K. J. Pathol. (1997) [Pubmed]
  36. Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity. Nouri-Aria, K.T., Wachholz, P.A., Francis, J.N., Jacobson, M.R., Walker, S.M., Wilcock, L.K., Staple, S.Q., Aalberse, R.C., Till, S.J., Durham, S.R. J. Immunol. (2004) [Pubmed]
  37. CXCR1+CD4+ T cells in human allergic disease. Francis, J.N., Jacobson, M.R., Lloyd, C.M., Sabroe, I., Durham, S.R., Till, S.J. J. Immunol. (2004) [Pubmed]
  38. Human nasal mucosal carboxypeptidase: activity, location, and release. Ohkubo, K., Baraniuk, J.N., Merida, M., Hausfeld, J.N., Okada, H., Kaliner, M.A. J. Allergy Clin. Immunol. (1995) [Pubmed]
  39. Functional effects of neuropeptide Y receptors on blood flow and nitric oxide levels in the human nose. Cervin, A., Onnerfält, J., Edvinsson, L., Grundemar, L. Am. J. Respir. Crit. Care Med. (1999) [Pubmed]
  40. Intranasal administration of eotaxin increases nasal eosinophils and nitric oxide in patients with allergic rhinitis. Hanazawa, T., Antuni, J.D., Kharitonov, S.A., Barnes, P.J. J. Allergy Clin. Immunol. (2000) [Pubmed]
 
WikiGenes - Universities