Muscarinic receptor regulation of NG108-15 adenylate cyclase: requirement for Na+ and GTP.
Cholinergic agonists inhibit the basal and PGE1-activated adenylate cyclase activity in membranes isolated from the mouse neuroblastoma x glioma hybrid cell NG108-15. Inhibition is observed with acetylcholine, acetyl-beta-methylcholine and carbachol and is blocked by two specific muscarinic antagonists, atropine and quinuclydinylbenzilate. Inhibition of basal and PGE1-activated activity is only partial. Carbachol-directed inhibition has an apparent Km of 6 microM in the presence or absence of PGE1. Both the guanine nucleotide GTP and the monovalent cation Na+ are required for this muscarinic inhibition of basal and PGE1-activated NG108-15 adenylate cyclase. The selectivity observed for monovalent cations (all chloride salts) in this process is Na+ congruent to Li+ greater than K+ greater than Choline+ with the ED50 for Na+ congruent 40 microM. Of the nucleotides tested, only IT (and not ATP, UTP or CTP) replaces GTP in this process. GTP at 10 microM represents a saturating nucleotide concentration. Opiate-directed inhibition of NG108-15 adenylate cyclase has recently been shown to exhibit a similar requirement for GTP and Na+ [Blume, A. J., Lichtshtein, D. and Boone, G. (1979) Proc. National Academy of Sciences, USA, in press]. The data presented here therefore support the hypothesis that the general transfer of inhibitory information from membrane receptors to adenylate cyclase involves both a Na+ and GTP-sensitive process.[1]References
- Muscarinic receptor regulation of NG108-15 adenylate cyclase: requirement for Na+ and GTP. Lichtshtein, D., Boone, G., Blume, A. Journal of cyclic nucleotide research. (1979) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg