The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Participation of cytochrome P-450 in reductive metabolism of 1-nitropyrene by rat liver microsomes.

Reductive metabolism of carcinogenic 1-nitropyrene by rat liver microsomes and reconstituted cytochrome P-450 systems was investigated. Under the nitrogen atmosphere, 1-aminopyrene was the only detected metabolite of 1-nitropyrene. The reductase activity in liver 105,000 X g supernatant fraction was ascribed to DT-diaphorase, aldehyde oxidase, and other unknown enzyme(s) from the results of cofactor requirements and inhibition experiments. The microsomal reductase activity was inhibited by oxygen, carbon monoxide, 2,4-dichloro-6-phenylphenoxyethylamine, and n-octylamine. Flavin mononucleotide markedly enhanced the activity, and 2-diethylaminoethyl-2,2-diphenylvalerate hydrochloride also enhanced it, but slightly. The microsomal activity was induced by the pretreatment of rats with 3-methylcholanthrene, sodium phenobarbital, or polychlorinated biphenyl, and the increments of the activity correlated well with those of the specific contents of cytochrome P-450 in microsomes. The reductase activity could be reconstituted by NADPH-cytochrome P-450 reductase and forms of cytochrome P-450 purified from liver microsomes of polychlorinated biphenyl-induced rats. Among four forms of cytochrome P-450 examined, an isozyme P-448-IId which showed high activity in hydroxylation of benzo(a)pyrene catalyzed most efficiently the reduction of 1-nitropyrene. The results of this study indicate the central role of cytochrome P-450 in the reductive metabolism of 1-nitropyrene in liver microsomes.[1]


WikiGenes - Universities