The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Hydrogen peroxide-mediated corneal endothelial damage. Induction by oxygen free radical.

Polymorphonuclear leukocytes and other inflammatory cells release superoxide anion and additional oxidant species following stimulation. Corneal endothelial cells were exposed to a flux of chemically generated superoxide anion (oxygen-free radical) produced by the combination of 1 mM hypoxanthine and 0.06 U/ml xanthine oxidase. Exposure of endothelial cells to the combination of hypoxanthine and xanthine oxidase resulted in anatomic disruption of the cells with interference in the function of endothelial water movement and resultant swelling of the corneal stroma. Catalase reduced the corneal swelling caused by exposure of endothelium to the oxygen-free radical generating system, whereas superoxide dismutase, ascorbic acid, D-mannitol, and ethanol did not prevent damage. The data suggest that hydrogen peroxide produced during the dismutation reaction of the superoxide anion is one of the toxic species, whereas the superoxide anion itself and the hydroxyl-free radical probably do not participate. The data suggest that corneal endothelial cells are susceptible to physiologic and anatomic damage induced by the products of reactive oxygen species, which, from previous studies, are known to be generated by inflammatory cells. The development of therapeutic modalities directed at the prevention of damage produced by hydrogen peroxide and other oxidant species may be of benefit in reducing corneal endothelial cell damage secondary to ocular inflammatory disease processes.[1]

References

  1. Hydrogen peroxide-mediated corneal endothelial damage. Induction by oxygen free radical. Hull, D.S., Green, K., Thomas, L., Alderman, N. Invest. Ophthalmol. Vis. Sci. (1984) [Pubmed]
 
WikiGenes - Universities