The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Binding specificity of serum amyloid P component for the pyruvate acetal of galactose.

Serum amyloid P component (SAP) is a normal plasma protein that is of interest because of its presence in amyloid deposits, its presence in normal human glomerular basement membrane, and its stable evolutionary conservation. It has calcium-dependent ligand-binding specificity for amyloid fibrils, fibronectin ( Fn), C4-binding protein (C4bp), and agarose. Although the binding to agarose, a linear galactan hydrocolloid derived from some marine algae, is unlikely per se to be related to the physiological function of SAP, it does provide a model system in which to explore the precise ligand requirements of SAP. We report here that the amount of SAP from human, mouse, and plaice (Pleuronectes platessa L.) serum able to bind to agarose from different sources reflect precisely their pyruvate content. Methylation with diazomethane of the carboxyl groups in the pyruvate moiety of agarose completely abolishes SAP binding to agarose. The pyruvate in agarose exists as the 4,6-pyruvate acetal of beta-D-galactopyranose. We have therefore synthesized this galactoside, using a novel procedure, established its structure by analysis of its nuclear magnetic resonance spectra, and shown that it completely inhibits all known calcium-dependent binding reactions of SAP. The R isomer of the cyclic acetal, methyl 4,6-O-(1-carboxyethylidene)-beta-D-galactopyranoside (MO beta DG) was effective at millimolar concentration and was more potent than its noncyclic analogue, while pyruvate, D-galactose, and methyl beta-D-galactopyranoside were without effect. The autologous protein ligands of SAP presumably, therefore express a structural determinant(s) that stereochemically resembles MO beta DG. Availability of this specific, well-characterized, low molecular weight ligand for SAP should facilitate further investigation of the function of SAP and its role in physiological and pathophysiological processes.[1]

References

  1. Binding specificity of serum amyloid P component for the pyruvate acetal of galactose. Hind, C.R., Collins, P.M., Renn, D., Cook, R.B., Caspi, D., Baltz, M.L., Pepys, M.B. J. Exp. Med. (1984) [Pubmed]
 
WikiGenes - Universities