Cloning and characterization of a 3-N-aminoglycoside acetyltransferase gene, aac(3)-Ib, from Pseudomonas aeruginosa.
A novel gene encoding an aminoglycoside 3-N-acetyltransferase, which confers resistance to gentamicin, astromicin, and sisomicin, was cloned from Pseudomonas aeruginosa Stone 130. Its sequence was determined and found to show considerable similarity to an aac(3)-I gene previously cloned from R plasmids from Enterobacter, Pseudomonas, and Serratia spp. We have designated the genes from the R plasmids and this work aac(3)-Ia and aac(3)-Ib, respectively. The two aac(3)-I genes share 74% nucleotide identity, and their deduced protein products are 88% similar. These data suggest that the genes derive from a common ancestor. Homology between the flanking sequences of both aac(3)-I genes and other resistance determinants known to reside in integron environments was also observed. Intragenic probes specific for either aac(3)-Ia or aac(3)-Ib were used in hybridization studies with a series of gentamicin-, astromicin-, and sisomicin-resistant clinical isolates. Of 59 clinical isolates tested, no isolates hybridized with both probes, 30 (51%) hybridized with the aac(3)-Ia probe, 12 (20%) hybridized with the aac(3)-Ib probe, and 17 (29%) did not hybridize with either probe. These data suggest the existence of at least one other aac(3)-I gene.[1]References
- Cloning and characterization of a 3-N-aminoglycoside acetyltransferase gene, aac(3)-Ib, from Pseudomonas aeruginosa. Schwocho, L.R., Schaffner, C.P., Miller, G.H., Hare, R.S., Shaw, K.J. Antimicrob. Agents Chemother. (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg