The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Defective G protein activation of the cAMP pathway in rat kidney during genetic hypertension.

The development of hypertension in the spontaneously hypertensive rat (SHR) is associated with renal dysfunction and vasoconstriction. The kidneys of young SHRs exhibit exaggerated reactivity to angiotensin II (Ang-II) and attenuated responses to vasodilators that normally activate the cAMP signal to buffer hormone-induced vasoconstriction. The present study investigates the mechanism(s) responsible for this abnormality in activation of the cAMP second-messenger pathway in hypertensive animals. Renal vascular reactivity was assessed in 7-week-old anesthetized SHRs and normotensive Wistar-Kyoto rats. The animals were pretreated with indomethacin to block prostanoid production throughout an experiment. Ang-II was injected into the renal artery either alone or mixed with the vasodilator fenoldopam, a dopamine-receptor agonist. These two opposing vasoactive agents were administered before and during intrarenal infusion of NaF or cholera toxin, two activators of G proteins that stimulate cAMP production. The results show that Ang-II reduced renal blood flow by 45% in both strains. In Wistar-Kyoto rats, fenoldopam reduced the Ang-II-induced decrease in renal blood flow from -45% to -30%. This protective effect of fenoldopam was increased further during infusion of NaF or cholera toxin (-18% or -19% decrease in renal blood flow). In SHRs, fenoldopam failed to attenuate Ang II-mediated vasoconstriction (-45% vs. -44%). In contrast, fenoldopam effectively blunted the Ang-II-induced vasoconstriction when it was given concurrently with NaF or cholera toxin (-27 or -31% decrease in renal blood flow). These findings provide evidence for defective interaction between receptor coupling and activation of guanine nucleotide stimulatory factor proteins in the renal microcirculation of 7-week-old SHRs. Such a deficiency could play an important role in renal dysfunction associated with the development of genetic hypertension.[1]

References

  1. Defective G protein activation of the cAMP pathway in rat kidney during genetic hypertension. Chatziantoniou, C., Ruan, X., Arendshorst, W.J. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
 
WikiGenes - Universities