The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli.

A multi-step screening procedure was devised to identify new operators for the LexA repressor in the sequenced portions of the genomes of Escherichia coli and its plasmids and bacteriophages. Sequence analysis methods were employed initially to distinguish true LexA operators from "operator-like" sequences stored within the GenBank and EMBL databases. The affinity of purified LexA protein for cloned DNA fragments containing several of the prospective new sites was then assessed using quantitative electrophoretic mobility shift assays and site-directed mutagenesis. Calculated binding affinities were compared directly with values determined for known and mutant LexA operators in concurrent experiments. Three E. coli chromosomal segments (near pyrC, hsdS and ntrla) and two bacteriophage sequences (near the P1 cre and lambda oop genes) bound LexA protein specifically. These sites and most others identified in the screening are located immediately upstream of known genes and/or large open reading frames. These results and additional transcription data demonstrate that several of the sequences define new DNA damage-inducible (din) genes and include the previously uncharacterized dinD locus. Furthermore, the search identified an SOS gene within the genome of P1 which encodes a protein that is homologous to UmuD', the RecA- promoted cleavage product of the umuD gene. The success of the combinatorial approach described here suggests that analogous searches for new regulatory sequences within the E. coli genome and the genomes of other organisms will also yield favorable results.[1]

References

  1. Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli. Lewis, L.K., Harlow, G.R., Gregg-Jolly, L.A., Mount, D.W. J. Mol. Biol. (1994) [Pubmed]
 
WikiGenes - Universities