The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Osteopenia and bone-remodeling abnormalities in warfarin-treated lambs.

The physiologic role of osteocalcin (OC), a vitamin K-dependent protein specific to bone, remains elusive. It has been shown that rats maintained on chronic treatment with vitamin K1 and its antagonist warfarin exhibit a marked decrease in bone osteocalcin because noncarboxylated osteocalcin does not bind to bone hydroxyapatite. To assess the role of OC in bone remodeling, we applied the warfarin model to growing lambs. We analyzed the bone changes after 3 months of concurrent warfarin and vitamin K1 treatment. Four groups of four lambs were constituted at birth and received daily a saline solution (control group, CT), 4 mg/kd/day of vitamin K1 (vitamin K group), 4 mg/kg/day of vitamin K1 + 75 or 150 mg/kg/day of warfarin (W75 and W150 group, respectively). In warfarin-treated animals, bone osteocalcin levels were decreased, both in the metaphysis (9% compared to controls) and the diaphysis (30% compared to controls) of the metacarpals. The fraction of noncarboxylated osteocalcin measured every month in the serum was significantly higher in warfarin-treated lambs than in controls at each timing point (37.6 +/- 2.6% in W75 and 48.7 +/- 5.2% in W150 versus 14.4 +/- 3.8% in controls at 3 months). Compared to non-warfarin-treated animals (NW), the main histomorphometric parameters measured on the iliac crest after tetracycline double labeling were significantly reduced in the warfarin-treated lambs: 12.2 +/- 5.2 versus 18.6 +/- 4.7% in NW (p < 0.03) for the cancellous bone area, which reflects the trabecular bone density; 14.7 +/- 6.1 versus 21.0 +/- 3.6% in NW (p < 0.03) for the eroded perimeter, and 0.315 +/- 0.064 versus 0.561 +/- 0.23 microns 3/microns 2/day in NW (p < 0.02) for the tetracycline-based bone formation rate. In conclusion, the depletion of osteocalcin in the bone of lambs induced within 3 months a marked osteopenia that resulted from a decrease in resorption and a more pronounced decrease in bone formation. Our data suggest that the presence of osteocalcin, the major gla-containing protein of bone, may be important for the maintenance of a normal bone mass and remodeling of trabecular bone.[1]


  1. Osteopenia and bone-remodeling abnormalities in warfarin-treated lambs. Pastoureau, P., Vergnaud, P., Meunier, P.J., Delmas, P.D. J. Bone Miner. Res. (1993) [Pubmed]
WikiGenes - Universities