The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Bone Diseases, Metabolic

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bone Diseases, Metabolic


Psychiatry related information on Bone Diseases, Metabolic


High impact information on Bone Diseases, Metabolic

  • Osteopenia associated with renal transplantation remains a problem in the cyclosporine era [11].
  • The importance of this regulatory mechanism for bone homeostasis is emphasized by the observation that mice deficient in IFN-beta signalling exhibit severe osteopenia (loss of bone mass) accompanied by enhanced osteoclastogenesis [12].
  • It appears that at present, serum BGP is the one bone protein that has the most promise for assisting in the diagnosis and management of high turnover metabolic bone disease states [13].
  • These results identify Fos as a key regulator of osteoclast-macrophage lineage determination in vivo and provide insights into the molecular mechanisms underlying metabolic bone diseases [14].
  • CONCLUSIONS--Long-term thyroid hormone use at thyroxine-equivalent doses of 1.6 micrograms/kg or greater was associated with significant osteopenia at the ultradistal radius, midshaft radius, hip, and lumbar spine [15].

Chemical compound and disease context of Bone Diseases, Metabolic


Biological context of Bone Diseases, Metabolic


Anatomical context of Bone Diseases, Metabolic


Gene context of Bone Diseases, Metabolic

  • By generating CD44(-/-) human TNF-transgenic (hTNFtg) mice, we show that destruction of joints and progressive crippling is far more severe in hTNFtg mice lacking CD44, which also develop severe generalized osteopenia [31].
  • Mice lacking the IRS-1 gene IRS-1(-/-) showed severe osteopenia with low bone turnover [26].
  • RESULTS: Eight- and 12-week-old IL-10-/- mice developed osteopenia of both cancellous and cortical bone, evidenced by lower femoral ash weight, cancellous bone area and surface, trabecular number, and decreased cortical bone area and width [21].
  • Unexpectedly, Cbfa1 transgenic mice showed osteopenia with multiple fractures [32].
  • In summary, we present Fhl2-deficient mice as a unique model for osteopenia due to decreased osteoblast activity [33].

Analytical, diagnostic and therapeutic context of Bone Diseases, Metabolic


  1. New biochemical marker for bone metabolism. Measurement by radioimmunoassay of bone GLA protein in the plasma of normal subjects and patients with bone disease. Price, P.A., Parthemore, J.G., Deftos, L.J. J. Clin. Invest. (1980) [Pubmed]
  2. Osteoporosis in primary biliary cirrhosis: effects of 25-hydroxyvitamin D3 treatment. Matloff, D.S., Kaplan, M.M., Neer, R.M., Goldberg, M.J., Bitman, W., Wolfe, H.J. Gastroenterology (1982) [Pubmed]
  3. Metabolic bone disease in patients receiving long-term total parenteral nutrition. Shike, M., Harrison, J.E., Sturtridge, W.C., Tam, C.S., Bobechko, P.E., Jones, G., Murray, T.M., Jeejeebhoy, K.N. Ann. Intern. Med. (1980) [Pubmed]
  4. Osteoporosis in men with hyperprolactinemic hypogonadism. Greenspan, S.L., Neer, R.M., Ridgway, E.C., Klibanski, A. Ann. Intern. Med. (1986) [Pubmed]
  5. SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Bradshaw, A.D., Graves, D.C., Motamed, K., Sage, E.H. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  6. The effects of estrogen administration on trabecular bone loss in young women with anorexia nervosa. Klibanski, A., Biller, B.M., Schoenfeld, D.A., Herzog, D.B., Saxe, V.C. J. Clin. Endocrinol. Metab. (1995) [Pubmed]
  7. Androgen deficiency in women. Miller, K.K. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
  8. Adult-onset alcohol consumption induces osteopenia in female rats. Hogan, H.A., Argueta, F., Moe, L., Nguyen , L.P., Sampson, H.W. Alcohol. Clin. Exp. Res. (2001) [Pubmed]
  9. ABO blood group differences in bone mineral density of recovering alcoholic males. Davidson, B.J., MacMurray, J.P., Prakash, V. Alcohol. Clin. Exp. Res. (1990) [Pubmed]
  10. Current view of risk factors for periodontal diseases. Genco, R.J. J. Periodontol. (1996) [Pubmed]
  11. Rapid loss of vertebral mineral density after renal transplantation. Julian, B.A., Laskow, D.A., Dubovsky, J., Dubovsky, E.V., Curtis, J.J., Quarles, L.D. N. Engl. J. Med. (1991) [Pubmed]
  12. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Takayanagi, H., Kim, S., Matsuo, K., Suzuki, H., Suzuki, T., Sato, K., Yokochi, T., Oda, H., Nakamura, K., Ida, N., Wagner, E.F., Taniguchi, T. Nature (2002) [Pubmed]
  13. Serum and urinary markers of bone remodeling: assessment of bone turnover. Epstein, S. Endocr. Rev. (1988) [Pubmed]
  14. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Grigoriadis, A.E., Wang, Z.Q., Cecchini, M.G., Hofstetter, W., Felix, R., Fleisch, H.A., Wagner, E.F. Science (1994) [Pubmed]
  15. Thyroid hormone use and bone mineral density in elderly women. Effects of estrogen. Schneider, D.L., Barrett-Connor, E.L., Morton, D.J. JAMA (1994) [Pubmed]
  16. Sex differences in osteoporosis in older adults with non-insulin-dependent diabetes mellitus. Barrett-Connor, E., Holbrook, T.L. JAMA (1992) [Pubmed]
  17. Effects of reciprocal treatment with estrogen and estrogen plus parathyroid hormone on bone structure and strength in ovariectomized rats. Shen, V., Birchman, R., Xu, R., Otter, M., Wu, D., Lindsay, R., Dempster, D.W. J. Clin. Invest. (1995) [Pubmed]
  18. Altered mineral metabolism in glucocorticoid-induced osteopenia. Effect of 25-hydroxyvitamin D administration. Hahn, T.J., Halstead, L.R., Teitelbaum, S.L., Hahn, B.H. J. Clin. Invest. (1979) [Pubmed]
  19. The HIV protease inhibitor ritonavir blocks osteoclastogenesis and function by impairing RANKL-induced signaling. Wang, M.W., Wei, S., Faccio, R., Takeshita, S., Tebas, P., Powderly, W.G., Teitelbaum, S.L., Ross, F.P. J. Clin. Invest. (2004) [Pubmed]
  20. Administration of cyclooxygenase-2 inhibitor reduces joint inflammation but exacerbates osteopenia in IL-1 alpha transgenic mice due to GM-CSF overproduction. Niki, Y., Takaishi, H., Takito, J., Miyamoto, T., Kosaki, N., Matsumoto, H., Toyama, Y., Tada, N. J. Immunol. (2007) [Pubmed]
  21. Interleukin 10-deficient mice develop osteopenia, decreased bone formation, and mechanical fragility of long bones. Dresner-Pollak, R., Gelb, N., Rachmilewitz, D., Karmeli, F., Weinreb, M. Gastroenterology (2004) [Pubmed]
  22. Defective bone mineralization and osteopenia in young adult FGFR3-/- mice. Valverde-Franco, G., Liu, H., Davidson, D., Chai, S., Valderrama-Carvajal, H., Goltzman, D., Ornitz, D.M., Henderson, J.E. Hum. Mol. Genet. (2004) [Pubmed]
  23. Decreased cellular activity and replicative capacity of osteoblastic cells isolated from the periarticular bone of rheumatoid arthritis patients compared with osteoarthritis patients. Yudoh, K., Matsuno, H., Osada, R., Nakazawa, F., Katayama, R., Kimura, T. Arthritis Rheum. (2000) [Pubmed]
  24. Reduced expression of interleukin-11 in bone marrow stromal cells of senescence-accelerated mice (SAMP6): relationship to osteopenia with enhanced adipogenesis. Kodama, Y., Takeuchi, Y., Suzawa, M., Fukumoto, S., Murayama, H., Yamato, H., Fujita, T., Kurokawa, T., Matsumoto, T. J. Bone Miner. Res. (1998) [Pubmed]
  25. The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis. Borton, A.J., Frederick, J.P., Datto, M.B., Wang, X.F., Weinstein, R.S. J. Bone Miner. Res. (2001) [Pubmed]
  26. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. Ogata, N., Chikazu, D., Kubota, N., Terauchi, Y., Tobe, K., Azuma, Y., Ohta, T., Kadowaki, T., Nakamura, K., Kawaguchi, H. J. Clin. Invest. (2000) [Pubmed]
  27. Pax5-deficient mice exhibit early onset osteopenia with increased osteoclast progenitors. Horowitz, M.C., Xi, Y., Pflugh, D.L., Hesslein, D.G., Schatz, D.G., Lorenzo, J.A., Bothwell, A.L. J. Immunol. (2004) [Pubmed]
  28. Efficacy and safety of alendronate for the treatment of osteoporosis in diffuse connective tissue diseases in children: a prospective multicenter study. Bianchi, M.L., Cimaz, R., Bardare, M., Zulian, F., Lepore, L., Boncompagni, A., Galbiati, E., Corona, F., Luisetto, G., Giuntini, D., Picco, P., Brandi, M.L., Falcini, F. Arthritis Rheum. (2000) [Pubmed]
  29. The role of the T-lymphocyte in estrogen deficiency osteopenia. Sass, D.A., Liss, T., Bowman, A.R., Rucinski, B., Popoff, S.N., Pan, Z., Ma, Y.F., Epstein, S. J. Bone Miner. Res. (1997) [Pubmed]
  30. Aromatase activity and bone homeostasis in men. Gennari, L., Nuti, R., Bilezikian, J.P. J. Clin. Endocrinol. Metab. (2004) [Pubmed]
  31. CD44 is a determinant of inflammatory bone loss. Hayer, S., Steiner, G., Görtz, B., Reiter, E., Tohidast-Akrad, M., Amling, M., Hoffmann, O., Redlich, K., Zwerina, J., Skriner, K., Hilberg, F., Wagner, E.F., Smolen, J.S., Schett, G. J. Exp. Med. (2005) [Pubmed]
  32. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. Liu, W., Toyosawa, S., Furuichi, T., Kanatani, N., Yoshida, C., Liu, Y., Himeno, M., Narai, S., Yamaguchi, A., Komori, T. J. Cell Biol. (2001) [Pubmed]
  33. Fhl2 deficiency results in osteopenia due to decreased activity of osteoblasts. Günther, T., Poli, C., Müller, J.M., Catala-Lehnen, P., Schinke, T., Yin, N., Vomstein, S., Amling, M., Schüle, R. EMBO J. (2005) [Pubmed]
  34. Effect of hormone replacement therapy on bone mineral density in postmenopausal women with mild primary hyperparathyroidism. A randomized, controlled trial. Grey, A.B., Stapleton, J.P., Evans, M.C., Tatnell, M.A., Reid, I.R. Ann. Intern. Med. (1996) [Pubmed]
  35. Antagonism of the osteoclast vitronectin receptor with an orally active nonpeptide inhibitor prevents cancellous bone loss in the ovariectomized rat. Lark, M.W., Stroup, G.B., Dodds, R.A., Kapadia, R., Hoffman, S.J., Hwang, S.M., James, I.E., Lechowska, B., Liang, X., Rieman, D.J., Salyers, K.L., Ward, K., Smith, B.R., Miller, W.H., Huffman, W.F., Gowen, M. J. Bone Miner. Res. (2001) [Pubmed]
  36. Zoledronic acid prevents osteopenia and increases bone strength in a rabbit model of distraction osteogenesis. Little, D.G., Smith, N.C., Williams, P.R., Briody, J.N., Bilston, L.E., Smith, E.J., Gardiner, E.M., Cowell, C.T. J. Bone Miner. Res. (2003) [Pubmed]
  37. Different effects of bisphosphonate and estrogen therapy on free and peptide-bound bone cross-links excretion. Garnero, P., Gineyts, E., Arbault, P., Christiansen, C., Delmas, P.D. J. Bone Miner. Res. (1995) [Pubmed]
  38. Increased catabolism of 25-hydroxyvitamin D in patients with partial gastrectomy and elevated 1,25-dihydroxyvitamin D levels. Implications for metabolic bone disease. Davies, M., Heys, S.E., Selby, P.L., Berry, J.L., Mawer, E.B. J. Clin. Endocrinol. Metab. (1997) [Pubmed]
WikiGenes - Universities