The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Bone Remodeling

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bone Remodeling

 

Psychiatry related information on Bone Remodeling

 

High impact information on Bone Remodeling

  • The TNF-family molecule RANK-L (RANK-L, TRANCE, ODF) and its receptor RANK are key regulators of bone remodeling, and they are essential for the development and activation of osteoclasts [8].
  • The hormone leptin is a regulator of bone remodeling, a homeostatic function maintaining bone mass constant [9].
  • Osteoprotegerin-ligand (OPGL) is a key osteoclast differentiation/activation factor essential for bone remodeling [10].
  • Receptor activator of NF-kappaB (RANK) and its ligand RANKL have been identified as essential factors involved in osteoclast development and bone remodeling, but their mechanism and interacting factors have not been fully characterized [11].
  • In Figure 9 a simplified model for the cellular effects of GH in the regulation of bone remodeling is presented (Fig. 9). GH increases bone formation in two ways: via a direct interaction with GHRs on osteoblasts and via an induction of endocrine and autocrine/paracrine IGF-I [12].
 

Chemical compound and disease context of Bone Remodeling

 

Biological context of Bone Remodeling

 

Anatomical context of Bone Remodeling

 

Associations of Bone Remodeling with chemical compounds

 

Gene context of Bone Remodeling

  • In the present study, we demonstrate a novel function of the Stat1 transcription factor in the regulation of bone remodeling [33].
  • Colony-stimulating factor-1 (CSF-1) is a hematopoietic growth factor that is released by osteoblasts and is recognized to play a critical role in bone remodeling in vivo and in vitro [34].
  • We now report that transforming growth factor beta1 (TGF-beta1), a potent regulatory cytokine of bone remodeling, is a powerful stimulator for gene expression of retinoic acid receptors (RARs) and retinoid X receptors (RXRs) in osteoblastic MC3T3-E1 cells [35].
  • These findings suggest that PDGF and IL-1 are jointly involved in the bone-remodeling microenvironment as local coupling factors [36].
  • Taken together, these findings define novel mechanisms involving the intersection of three pathways, Runx2, 1,25(OH)(2)D(3), and Notch signaling, that play a major role in the regulation of OPN in osteoblastic cells and therefore in the process of bone remodeling [37].
 

Analytical, diagnostic and therapeutic context of Bone Remodeling

References

  1. Increased expression of TGF-beta 2 in osteoblasts results in an osteoporosis-like phenotype. Erlebacher, A., Derynck, R. J. Cell Biol. (1996) [Pubmed]
  2. Bone disease in alcohol abuse. Bikle, D.D., Genant, H.K., Cann, C., Recker, R.R., Halloran, B.P., Strewler, G.J. Ann. Intern. Med. (1985) [Pubmed]
  3. Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity. Kusu, N., Laurikkala, J., Imanishi, M., Usui, H., Konishi, M., Miyake, A., Thesleff, I., Itoh, N. J. Biol. Chem. (2003) [Pubmed]
  4. The assessment of bone formation and bone resorption in osteoporosis: a comparison between tetracycline-based iliac histomorphometry and whole body 85Sr kinetics. Reeve, J., Arlot, M.E., Chavassieux, P.M., Edouard, C., Green, J.R., Hesp, R., Tellez, M., Meunier, P.J. J. Bone Miner. Res. (1987) [Pubmed]
  5. Primary hyperparathyroidism: lessons from bone histomorphometry. Eriksen, E.F. J. Bone Miner. Res. (2002) [Pubmed]
  6. Alcohol intake and bone metabolism in elderly women. Rapuri, P.B., Gallagher, J.C., Balhorn, K.E., Ryschon, K.L. Am. J. Clin. Nutr. (2000) [Pubmed]
  7. Comparative effect of oral pulse and intravenous calcitriol treatment in hemodialysis patients: the effect on serum IL-1 and IL-6 levels and bone mineral density. Türk, S., Akbulut, M., Yildiz, A., Gürbilek, M., Gönen, S., Tombul, Z., Yeksan, M. Nephron (2002) [Pubmed]
  8. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Theill, L.E., Boyle, W.J., Penninger, J.M. Annu. Rev. Immunol. (2002) [Pubmed]
  9. The molecular clock mediates leptin-regulated bone formation. Fu, L., Patel, M.S., Bradley, A., Wagner, E.F., Karsenty, G. Cell (2005) [Pubmed]
  10. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Fata, J.E., Kong, Y.Y., Li, J., Sasaki, T., Irie-Sasaki, J., Moorehead, R.A., Elliott, R., Scully, S., Voura, E.B., Lacey, D.L., Boyle, W.J., Khokha, R., Penninger, J.M. Cell (2000) [Pubmed]
  11. The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Wada, T., Nakashima, T., Oliveira-dos-Santos, A.J., Gasser, J., Hara, H., Schett, G., Penninger, J.M. Nat. Med. (2005) [Pubmed]
  12. Growth hormone and bone. Ohlsson, C., Bengtsson, B.A., Isaksson, O.G., Andreassen, T.T., Slootweg, M.C. Endocr. Rev. (1998) [Pubmed]
  13. Alendronate treatment of the postmenopausal osteoporotic woman: effect of multiple dosages on bone mass and bone remodeling. Chesnut, C.H., McClung, M.R., Ensrud, K.E., Bell, N.H., Genant, H.K., Harris, S.T., Singer, F.R., Stock, J.L., Yood, R.A., Delmas, P.D. Am. J. Med. (1995) [Pubmed]
  14. Osteopenia and bone-remodeling abnormalities in warfarin-treated lambs. Pastoureau, P., Vergnaud, P., Meunier, P.J., Delmas, P.D. J. Bone Miner. Res. (1993) [Pubmed]
  15. Cyclosporine bone remodeling effect prevents steroid osteopenia after kidney transplantation. Westeel, F.P., Mazouz, H., Ezaitouni, F., Hottelart, C., Ivan, C., Fardellone, P., Brazier, M., El Esper, I., Petit, J., Achard, J.M., Pruna, A., Fournier, A. Kidney Int. (2000) [Pubmed]
  16. Cyclosporin A increases the biochemical markers of bone remodeling in primary biliary cirrhosis. Guañabens, N., Parés, A., Navasa, M., Martínez de Osaba, M.J., Hernández, M.E., Muñoz, J., Rodés, J. J. Hepatol. (1994) [Pubmed]
  17. Nitric oxide regulates receptor activator of nuclear factor-kappaB ligand and osteoprotegerin expression in bone marrow stromal cells. Fan, X., Roy, E., Zhu, L., Murphy, T.C., Ackert-Bicknell, C., Hart, C.M., Rosen, C., Nanes, M.S., Rubin, J. Endocrinology (2004) [Pubmed]
  18. Role of osteopontin in cellular signaling and toxicant injury. Denhardt, D.T., Giachelli, C.M., Rittling, S.R. Annu. Rev. Pharmacol. Toxicol. (2001) [Pubmed]
  19. Bone marrow transplantation corrects osteopetrosis in the carbonic anhydrase II deficiency syndrome. McMahon, C., Will, A., Hu, P., Shah, G.N., Sly, W.S., Smith, O.P. Blood (2001) [Pubmed]
  20. c-fos and bone loss: a proto-oncogene regulates osteoclast lineage determination. Jacenko, O. Bioessays (1995) [Pubmed]
  21. Osteoblastic responses to TGF-beta during bone remodeling. Erlebacher, A., Filvaroff, E.H., Ye, J.Q., Derynck, R. Mol. Biol. Cell (1998) [Pubmed]
  22. Fetuin/alpha2-HS glycoprotein is a transforming growth factor-beta type II receptor mimic and cytokine antagonist. Demetriou, M., Binkert, C., Sukhu, B., Tenenbaum, H.C., Dennis, J.W. J. Biol. Chem. (1996) [Pubmed]
  23. Monocyte recruitment and expression of monocyte chemoattractant protein-1 are developmentally regulated in remodeling bone in the mouse. Volejnikova, S., Laskari, M., Marks, S.C., Graves, D.T. Am. J. Pathol. (1997) [Pubmed]
  24. Adenoviral transfer of murine oncostatin M elicits periosteal bone apposition in knee joints of mice, despite synovial inflammation and up-regulated expression of interleukin-6 and receptor activator of nuclear factor-kappa B ligand. de Hooge, A.S., van de Loo, F.A., Bennink, M.B., de Jong, D.S., Arntz, O.J., Lubberts, E., Richards, C.D., vandDen Berg, W.B. Am. J. Pathol. (2002) [Pubmed]
  25. IL-1 induces expression of monocyte chemoattractant JE in clonal mouse osteoblastic cell line MC3T3-E1. Takeshita, A., Hanazawa, S., Amano, S., Matumoto, T., Kitano, S. J. Immunol. (1993) [Pubmed]
  26. The bone lining cell: its role in cleaning Howship's lacunae and initiating bone formation. Everts, V., Delaissé, J.M., Korper, W., Jansen, D.C., Tigchelaar-Gutter, W., Saftig, P., Beertsen, W. J. Bone Miner. Res. (2002) [Pubmed]
  27. Beta 2-microglobulin modified with advanced glycation end products modulates collagen synthesis by human fibroblasts. Owen, W.F., Hou, F.F., Stuart, R.O., Kay, J., Boyce, J., Chertow, G.M., Schmidt, A.M. Kidney Int. (1998) [Pubmed]
  28. Progesterone as a bone-trophic hormone. Prior, J.C. Endocr. Rev. (1990) [Pubmed]
  29. Cyclic AMP and cyclic GMP: mediators of the mechanical effects on bone remodeling. Rodan, G.A., Bourret, L.A., Harvey, A., Mensi, T. Science (1975) [Pubmed]
  30. Vitamin A intake and hip fractures among postmenopausal women. Feskanich, D., Singh, V., Willett, W.C., Colditz, G.A. JAMA (2002) [Pubmed]
  31. Osteopenia and decreased bone formation in osteonectin-deficient mice. Delany, A.M., Amling, M., Priemel, M., Howe, C., Baron, R., Canalis, E. J. Clin. Invest. (2000) [Pubmed]
  32. Chronic alcohol ingestion induces osteoclastogenesis and bone loss through IL-6 in mice. Dai, J., Lin, D., Zhang, J., Habib, P., Smith, P., Murtha, J., Fu, Z., Yao, Z., Qi, Y., Keller, E.T. J. Clin. Invest. (2000) [Pubmed]
  33. Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Kim, S., Koga, T., Isobe, M., Kern, B.E., Yokochi, T., Chin, Y.E., Karsenty, G., Taniguchi, T., Takayanagi, H. Genes Dev. (2003) [Pubmed]
  34. The cell-surface form of colony-stimulating factor-1 is regulated by osteotropic agents and supports formation of multinucleated osteoclast-like cells. Yao, G.Q., Sun, B., Hammond, E.E., Spencer, E.N., Horowitz, M.C., Insogna, K.L., Weir, E.C. J. Biol. Chem. (1998) [Pubmed]
  35. Transcriptional regulation by transforming growth factor beta of the expression of retinoic acid and retinoid X receptor genes in osteoblastic cells is mediated through AP-1. Chen, Y., Takeshita, A., Ozaki, K., Kitano, S., Hanazawa, S. J. Biol. Chem. (1996) [Pubmed]
  36. Interleukin-1 enhances the response of osteoblasts to platelet-derived growth factor through the alpha receptor-specific up-regulation. Tsukamoto, T., Matsui, T., Nakata, H., Ito, M., Natazuka, T., Fukase, M., Fujita, T. J. Biol. Chem. (1991) [Pubmed]
  37. The vitamin D receptor, Runx2, and the Notch signaling pathway cooperate in the transcriptional regulation of osteopontin. Shen, Q., Christakos, S. J. Biol. Chem. (2005) [Pubmed]
  38. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. Poli, V., Balena, R., Fattori, E., Markatos, A., Yamamoto, M., Tanaka, H., Ciliberto, G., Rodan, G.A., Costantini, F. EMBO J. (1994) [Pubmed]
  39. Colony stimulating factor-1 plays a role in osteoclast formation and function in bone resorption induced by parathyroid hormone and parathyroid hormone-related protein. Weir, E.C., Lowik, C.W., Paliwal, I., Insogna, K.L. J. Bone Miner. Res. (1996) [Pubmed]
  40. Aminohydroxybutane bisphosphonate inhibits bone loss due to immobilization in rats. Thompson, D.D., Seedor, J.G., Weinreb, M., Rosini, S., Rodan, G.A. J. Bone Miner. Res. (1990) [Pubmed]
  41. Multifactorial low remodeling bone disease during cyclic total parenteral nutrition. de Vernejoul, M.C., Messing, B., Modrowski, D., Bielakoff, J., Buisine, A., Miravet, L. J. Clin. Endocrinol. Metab. (1985) [Pubmed]
  42. Raloxifene and estrogen: comparative bone-remodeling kinetics. Heaney, R.P., Draper, M.W. J. Clin. Endocrinol. Metab. (1997) [Pubmed]
 
WikiGenes - Universities