The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

In vivo efficacy of trovafloxacin (CP-99,219), a new quinolone with extended activities against gram-positive pathogens, Streptococcus pneumoniae, and Bacteroides fragilis.

The interesting in vitro antimicrobial activity and pharmacokinetics of the new quinolone trovafloxacin (CP-99,219) warranted further studies to determine its in vivo efficacy in models of infectious disease. The significance of the pharmacokinetic and in vitro antimicrobial profiles of trovafloxacin was shown through efficacy in a series of animal infection models by employing primarily oral therapy. Against acute infections, trovafloxacin was consistently more effective than temafloxacin, ciprofloxacin, and ofloxacin against Streptococcus pneumoniae and other gram-positive pathogens while maintaining activity comparable to that of ciprofloxacin against gram-negative organisms. In a model of murine pneumonia, trovafloxacin was more efficacious than temafloxacin, while ciprofloxacin failed against S. pneumoniae (50% protective doses, 2.1, 29.5, and >100 mg/kg, respectively). In addition to its inherent in vitro potency advantage against S. pneumoniae, these data were supported by a pharmacokinetic study that showed levels of trovafloxacin in pulmonary tissue of S. pneumoniae-infected CF1 mice to be considerably greater than those of temafloxacin and ciprofloxacin (twice the maximum drug concentration in serum; two to three times the half-life, and three to six times the area under the concentration-time curve). Against localized mixed anaerobic infections, trovafloxacin was the only agent to effectively reduce the numbers of recoverable CFU of Bacteroides fragilis ( >1,000-fold), Staphylococcus aureus (1,000-fold), and Escherichia coli ( >100-fold) compared with ciprofloxacin, vancomycin, metronidazole, clindamycin, cefoxitin, and ceftriaxone. The in vitro and in vivo antimicrobial activities of trovafloxacin and its pharmacokinetics in laboratory animals provide support for the ongoing and planned human phase II and III clinical trials.[1]

References

 
WikiGenes - Universities