The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ornithine decarboxylase activity in rat intestinal mucosa and liver is stimulated by central administration of 2-deoxy-D-glucose but not of 2,5-anhydro-D-mannitol.

It has been shown that 2-deoxy-D-glucose (2-DG) inhibits glucose utilization and elicits feeding through the lateral hypothalamus. In contrast, 2,5-anhydro-D-mannitol (2,5-AM), blocking glycogenolysis and/or gluconeogenesis, elicits feeding through the ventromedial hypothalamus. The aim of the present study was to determine whether ornithine decarboxylase ( ODC) activity in the rat small intestine is stimulated by infusion into the third ventricle of 2-DG or of 2,5-AM. Under anesthesia, a cannula was implanted into the third ventricle one week before the experiment. Each rat was infused with 6, 12, and 24 mumol 2-DG or 2,5-AM into the third ventricle without disturbing the behavior. Ingestive behavior was observed for one h after the infusion. ODC activity in the intestinal mucosa and the liver was measured 2 h after the infusion. Additionally, ODC activity was measured in vagotomized rats. Both test solutions elicit feeding at 24 mumol/rat. Infusion of 2-DG into the cerebroventricle significantly increased ODC activity in the duodenal and jejunal mucosa and the liver. In contrast to 2-DG, infusion of 2,5-AM did not increase ODC activity in the intestinal mucosa or liver. Truncal vagotomy attenuated the increase of ODC activity in the intestinal mucosa and liver induced by 2-DG. The present study showed that 2-DG, but not 2,5-AM, increased ODC activity in the peripheral organs, indicating that glucose-metabolism at specific sites of the central nervous system, including the lateral hypothalamus, is important for stimulatory signals to ODC activity. It is also indicated that the stimulatory signals from the central nervous system are mediated, at least in part, via the efferent vagal nerve.[1]

References

  1. Ornithine decarboxylase activity in rat intestinal mucosa and liver is stimulated by central administration of 2-deoxy-D-glucose but not of 2,5-anhydro-D-mannitol. Morita, H., Fujimoto, K., Sakata, T., Kurokawa, M., Yoshimatsu, H., Noda, T., Iwakiri, R., Sakai, T. Brain Res. (1996) [Pubmed]
 
WikiGenes - Universities