SPC3, a V3 loop-derived synthetic peptide inhibitor of HIV-1 infection, binds to cell surface glycosphingolipids.
Synthetic multibranched peptides derived from the V3 domain of human immunodeficiency virus type 1 (HIV-1) gp120 inhibit HIV-1 entry into CD4+ and CD4- cells by two distinct mechanisms: competitive inhibition of HIV-1 binding to CD4-/GalCer+ colon cells and postbinding inhibition of HIV-1 fusion with CD4+ lymphocytes. In the present study, we have characterized the cellular binding sites for the V3 peptide SPC3, which possesses eight V3 consensus motifs GPGRAF radially branched on a neutral polyLys core matrix. These binding sites are glycosphingolipids that share a common structural determinant, i.e., a terminal galactose residue with a free hydroxyl group in position 4: GalCer/sulfatide on CD4-/GalCer+ colon cells; LacCer and its sialosyl derivatives GM3 and GD3 on CD4+ human lymphocytes. These data suggest that the V3 peptide binds to the GalCer/sulfatide receptor for HIV-1 gp120 on HT-29 cells and thus acts as a competitive inhibitor of virus binding to these CD4- cells, in full agreement with previously published virological data. In contrast, SPC3 does not bind to the CD4 receptor, in agreement with the data showing that the peptide inhibits HIV-1 infection of CD4+ cells by acting at a postattachment step. The binding of SPC3 to LacCer, GM3, and GD3, expressed by CD4+ lymphocytes, suggests a role for these glycosphingolipids in the fusion process between the viral envelope and the plasma membrane of CD4+ cells. Since the multivalent peptide can theoretically bind to several of these glycosphingolipids, we hypothesize that the resulting cross-linking of membrane components may affect the fluidity of the plasma membrane and/or membrane curvature, altering the virus-cell fusion mechanism.[1]References
- SPC3, a V3 loop-derived synthetic peptide inhibitor of HIV-1 infection, binds to cell surface glycosphingolipids. Delézay, O., Hammache, D., Fantini, J., Yahi, N. Biochemistry (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg