Diverse genetic regulatory motifs required for murine adenosine deaminase gene expression in the placenta.
Murine adenosine deaminase (ADA) is a ubiquitous purine catabolic enzyme whose expression is subject to developmental and tissue-specific regulation. ADA is enriched in trophoblast cells of the chorioallantoic placenta and is essential for embryonic and fetal development. To begin to understand the genetic pathway controlling Ada gene expression in the placenta, we have identified and characterized a 770-base pair fragment located 5.4 kilobase pairs upstream of the Ada transcription initiation site, which directs reporter gene expression to the placenta of transgenic mice. The expression pattern of the reporter gene reflected that of the endogenous Ada gene in the placenta. Sequence analysis revealed potential binding sites for bHLH and GATA transcription factors. DNase I footprinting defined three protein binding regions, one of which was placenta-specific. Mutations in the potential protein binding sites and footprinting regions resulted in loss of placental expression in transgenic mice. These findings indicate that multiple protein binding motifs are necessary for Ada expression in the placenta.[1]References
- Diverse genetic regulatory motifs required for murine adenosine deaminase gene expression in the placenta. Shi, D., Winston, J.H., Blackburn, M.R., Datta, S.K., Hanten, G., Kellems, R.E. J. Biol. Chem. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg