The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Loss of inhibitory synapses on the soma and axon initial segment of pyramidal cells in human epileptic peritumoural neocortex: implications for epilepsy.

The peritumoural neocortex removed from epileptic patients represents an important region for research because of its possible relationship to the generation, maintenance, and propagation of seizures. The peritumoural neocortex removed from an epileptic patient showing a regrowth of an anaplastic astrocytoma was examined in detail using immunocytochemistry for gamma-aminobutyric acid, glutamic acid decarboxylase, parvalbumin, nonphosphorylated neurofilament protein, glial fibrillary acidic protein, and histocompatibility antigen HLA-DR. The patterns of immunostaining were compared with the cytoarchitecture and myeloarchitecture in adjacent sections, and with the patterns of immunostaining observed in normal control neocortex. Furthermore, quantitative electron microscopy was used to compare the synaptic densities of presumptive excitatory and inhibitory synapses between regions showing different grades of cytoarchitectural and neurochemical alterations in the peritumoural neocortex, and to compare these regions with normal neocortex. A variety of changes in synaptic circuits in the peritumoural neocortex was found, but it appears that neurons within the less abnormal-looking regions were involved in altered synaptic circuits that might contribute to epileptic activity. In these regions, the most prominent change was the loss of inhibitory synapses on the soma and axon initial segment of pyramidal cells, but numerous excitatory synapses were present on their dendrites that would make these neurons hyperexcitable. However, the most abnormal regions histologically were likely a primary zone for progression of the tumour, with many surviving neurones, but which received and formed very few synapses; thus, they were probably unrelated to the initiation, maintenance, or propagation of seizures.[1]

References

 
WikiGenes - Universities