The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Uncoupling of hepatic, epidermal growth factor- mediated mitogen-activated protein kinase activation in the fetal rat.

Stimulation of cell proliferation by mitogens involves tyrosine phosphorylation of proteins at the cell membrane by receptor tyrosine kinases. This promotes formation of multi-protein complexes that can activate the small G-protein, Ras. Activation of Ras, in turn, leads to sequential activation of the following three serine-threonine kinases: Raf, extracellular signal-regulated kinase kinase (MEK), and members of the family of mitogen-activated protein (MAP) kinases. Prior studies have shown that intraperitoneal injection of epidermal growth factor (EGF) leads to rapid activation of hepatic MAP kinases in adult rats but not in late gestation (E19) fetal rats (Boylan, J. M., and Gruppuso, P. A. (1996) Cell Growth & Differ. 7, 1261-1269). The present studies were undertaken to determine the mechanism for this "uncoupling" of the MAP kinase pathway. E19 fetal rats and adult male rats were injected with EGF (0.5 microg/g body weight, intraperitoneally) or with saline. After 15 min, livers were removed and prepared for kinase analyses. EGF injection led to a rapid and marked activation of hepatic Raf and MEK in both fetal and adult rats, whereas MAP kinase activation was minimal in fetal as opposed to adult rats. Examination of the ontogeny of this dissociation of MAP kinase activation from MEK activation showed gradual acquisition of intact signaling as an adult hepatocyte phenotype was attained during the first 4 postnatal weeks. Over this period, MAP kinase content as determined by Western immunoblotting was constant. Recombination experiments using partially purified fetal and adult rat liver MEK and MAP kinase showed intact MAP kinase activation in vitro, indicating that neither enzyme was irreversibly altered in the fetus. In studies using primary cultures of E19 fetal rat hepatocytes, uncoupling of MAP kinase activation from MEK activation could be induced by incubation of fetal hepatocytes for 24 h with a potent fetal hepatocyte mitogen, transforming growth factor-alpha. These findings indicate that a novel negative feedback mechanism for MAP kinase regulation may be active in developing rat hepatocytes.[1]

References

 
WikiGenes - Universities