The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Expression cloning of a human sulfotransferase that directs the synthesis of the HNK-1 glycan on the neural cell adhesion molecule and glycolipids.

The HNK-1 carbohydrate is expressed on various adhesion molecules in the nervous system and is suggested to play a role in cell-cell and cell-substratum interactions. Here we describe the isolation and functional expression of a cDNA encoding a human sulfotransferase that synthesizes the HNK-1 carbohydrate epitope. A mutant Chinese hamster ovary cell line, Lec2, which stably expresses human neural cell adhesion molecule (N-CAM) (Lec2-NCAM), was first established. Lec2-NCAM was co-transfected with a human fetal brain cDNA library, a cDNA encoding the rat glucuronyltransferase that forms a precursor of the HNK-1 carbohydrate, and a vector encoding the polyoma large T antigen. The transfected Lec2-NCAM cells expressing the HNK-1 glycan were enriched by fluorescence-activated cell sorting. Sibling selection of recovered plasmids resulted in a cDNA encoding a sulfotransferase, HNK-1ST, that directs the expression of the HNK-1 carbohydrate epitope on the cell surface. The deduced amino acid sequence indicates that the enzyme is a type II membrane protein. Sequence analysis revealed that there is a short amino acid sequence in the presumed catalytic domain, which is highly homologous to the corresponding sequence in other Golgi-associated sulfotransferases so far cloned. The amount of HNK-1ST transcript is high in fetal brain compared with fetal lung, kidney, and liver. Expression of HNK-1ST resulted in the formation of the HNK-1 epitope on N-CAM and a soluble chimeric form of HNK-1ST was shown to add a sulfate group to a precursor, GlcAbeta1-->3Galbeta1-->4GlcNAcbeta1-->R, forming sulfo-->3GlcAbeta1-->3Galbeta1-->4GlcNAcbeta1-->R. The results combined together indicate that the cloned HNK-1ST directs the synthesis of the HNK-1 carbohydrate epitope on both glycoproteins and glycolipids in the nervous tissues.[1]

References

 
WikiGenes - Universities