The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Engineering yeast for efficient cellulose degradation.

Saccharomyces cerevisiae produces several beta-1,3-glucanases, but lacks the multicomponent cellulase complexes that hydrolyse the beta-1,4-linked glucose polymers present in cellulose-rich biomass as well as in haze-forming glucans in certain wines and beers. We have introduced into S. cerevisiae a functional cellulase complex for efficient cellulose degradation by cloning the Endomyces fibuliger cellobiase (BGL1) gene and co-expressing it with the Butyrivibrio fibrisolvens endo-beta-1,4-glucanase (END1), the Phanerochaete chrysosporium cellobiohydrolase (CBH1) and the Ruminococcus flavefacies cellodextrinase (CEL1) gene constructs in this yeast. The END1, CBH1 and CEL1 genes were inserted into yeast expression/secretion cassettes. Expression of END1, CBH1 and CEL1 was directed by the promoter sequences derived from the alcohol dehydrogenase II ( ADH2), the phosphoglycerate kinase I (PKG1) and the alcohol dehydrogenase I (ADH1) genes, respectively. In contrast, BGL1 was expressed under the control of its native promoter. Secretion of End1p and Cel1p was directed by the signal sequence of the yeast mating pheromone alpha-factor (MF alpha 1), whereas Cbh1p and Bgl1p were secreted using their authentic leader peptides. The construction of a fur1 ura3 S. cerevisiae strain allowed for the autoselection of this multicopy URA3-based plasmid in rich medium. S. cerevisiae transformants secreting biologically active endo-beta-1,4-glucanase, cellobiohydrolase, cellodextrinase and cellobiase were able to degrade various substrates including carboxymethylcellulose, hydroxyethylcellulose, laminarin, barley glucan, cellobiose, polypectate, birchwood xylan and methyl-beta-D-glucopyranoside. This study could lead to the development of industrial strains of S. cerevisiae capable of converting cellulose in a one-step process into commercially important commodities.[1]

References

  1. Engineering yeast for efficient cellulose degradation. Van Rensburg, P., Van Zyl, W.H., Pretorius, I.S. Yeast (1998) [Pubmed]
 
WikiGenes - Universities