The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Ruminococcus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ruminococcus

 

High impact information on Ruminococcus

  • Only Ruminococcus AB strain VI-268 produced blood group B-degrading alpha-galactosidase activity, but this strain lacked beta-N-acetylhexosaminidases to complete degradation of B antigenic chains [1].
  • A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 comprises two dissimilar domains linked by an asparagine/glutamine-rich sequence [6].
  • Ethanol, acetate, and butyrate are formed from acetyl coenzyme A. Formate is produced by reduction of CO2 by Ruminococcus albus [7].
  • A species-specific probe was also designed to detect members of the Ruminococcus callidus species (Rcal 733) [8].
  • Biochemical and mutational analysis of glutamine synthetase type III from the rumen anaerobe Ruminococcus albus 8 [9].
 

Chemical compound and disease context of Ruminococcus

 

Biological context of Ruminococcus

 

Gene context of Ruminococcus

 

Analytical, diagnostic and therapeutic context of Ruminococcus

References

  1. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. Hoskins, L.C., Agustines, M., McKee, W.B., Boulding, E.T., Kriaris, M., Niedermeyer, G. J. Clin. Invest. (1985) [Pubmed]
  2. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Salyers, A.A., West, S.E., Vercellotti, J.R., Wilkins, T.D. Appl. Environ. Microbiol. (1977) [Pubmed]
  3. Structure of a Ruminococcus albus endo-1,4-beta-glucanase gene. Ohmiya, K., Kajino, T., Kato, A., Shimizu, S. J. Bacteriol. (1989) [Pubmed]
  4. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Hiltner, P., Dehority, B.A. Appl. Environ. Microbiol. (1983) [Pubmed]
  5. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. Callaway, E.S., Martin, S.A. J. Dairy Sci. (1997) [Pubmed]
  6. A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 comprises two dissimilar domains linked by an asparagine/glutamine-rich sequence. Zhang, J.X., Flint, H.J. Mol. Microbiol. (1992) [Pubmed]
  7. Fermentations by saccharolytic intestinal bacteria. Miller, T.L., Wolin, M.J. Am. J. Clin. Nutr. (1979) [Pubmed]
  8. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Lay, C., Sutren, M., Rochet, V., Saunier, K., Doré, J., Rigottier-Gois, L. Environ. Microbiol. (2005) [Pubmed]
  9. Biochemical and mutational analysis of glutamine synthetase type III from the rumen anaerobe Ruminococcus albus 8. Amaya, K.R., Kocherginskaya, S.A., Mackie, R.I., Cann, I.K. J. Bacteriol. (2005) [Pubmed]
  10. Cellobiose uptake and metabolism by Ruminococcus flavefaciens. Helaszek, C.T., White, B.A. Appl. Environ. Microbiol. (1991) [Pubmed]
  11. Cellobiose versus glucose utilization by the ruminal bacterium Ruminococcus albus. Thurston, B., Dawson, K.A., Strobel, H.J. Appl. Environ. Microbiol. (1993) [Pubmed]
  12. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Latham, M.J., Wolin, M.J. Appl. Environ. Microbiol. (1977) [Pubmed]
  13. Pentose utilization by the ruminal bacterium Ruminococcus albus. Thurston, B., Dawson, K.A., Strobel, H.J. Appl. Environ. Microbiol. (1994) [Pubmed]
  14. Partial characterization of a DNA restriction endonuclease from Ruminococcus flavefaciens FD-1 and its inhibition by site-specific adenine methylation. Morrison, M., Mackie, R.I., White, B.A. Appl. Environ. Microbiol. (1992) [Pubmed]
  15. Nucleotide sequence of the celA gene encoding a cellodextrinase of Ruminococcus flavefaciens FD-1. Wang, W.Y., Thomson, J.A. Mol. Gen. Genet. (1990) [Pubmed]
  16. Ethanol production from cellobiose by Zymobacter palmae carrying the Ruminocuccus albus beta-glucosidase gene. Yanase, H., Yamamoto, K., Sato, D., Okamoto, K. J. Biotechnol. (2005) [Pubmed]
  17. DNA sequence and transcriptional characterization of a beta-glucanase gene (celB) from Ruminococcus flavefaciens FD-1. Vercoe, P.E., Finks, J.L., White, B.A. Can. J. Microbiol. (1995) [Pubmed]
  18. An endo-beta-1,4-glucanase gene (celA) from the rumen anaerobe Ruminococcus albus 8: cloning, sequencing, and transcriptional analysis. Attwood, G.T., Herrera, F., Weissenstein, L.A., White, B.A. Can. J. Microbiol. (1996) [Pubmed]
  19. Heterologous expression of an endoglucanase gene (endA) from the ruminal anaerobe Ruminococcus flavefaciens 17 in Streptococcus bovis and Streptococcus sanguis. Whitehead, T.R., Flint, H.J. FEMS Microbiol. Lett. (1995) [Pubmed]
  20. Nucleotide sequence and transcriptional analysis of the celD beta-glucanase gene from Ruminococcus flavefaciens FD-1. Vercoe, P.E., Spight, D.H., White, B.A. Can. J. Microbiol. (1995) [Pubmed]
  21. Purification and characterization of phosphoenolpyruvate carboxykinase from the anaerobic ruminal bacterium Ruminococcus flavefaciens. Schöcke, L., Weimer, P.J. Arch. Microbiol. (1997) [Pubmed]
 
WikiGenes - Universities