The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

mu-Opioid receptor activates signaling pathways implicated in cell survival and translational control.

The mu-opioid receptor mediates the analgesic and addictive properties of morphine. Despite the clinical importance of this G-protein-coupled receptor and many years of pharmacological research, few intracellular signaling mechanisms triggered by morphine and other mu-opioid agonists have been described. We report that mu-opioid agonists stimulate three different effectors of a phosphoinositide 3-kinase (PI3K)-dependent signaling cascade. By using a cell line stably transfected with the mu-opioid receptor cDNA, we show that the specific agonist [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DAMGO) stimulates the activity of Akt, a serine/threonine protein kinase implicated in protecting neurons from apoptosis. Activation of Akt by DAMGO correlates with its phosphorylation at serine 473. The selective PI3K inhibitors wortmannin and LY294002 blocked phosphorylation of this site, previously shown to be necessary for Akt enzymatic activity. DAMGO also stimulates the phosphorylation of two other downstream effectors of PI3K, the p70 S6 kinase and the repressors of mRNA translation, 4E-BP1 and 4E-BP2. Upon mu-opioid receptor stimulation, p70 S6 kinase is activated and phosphorylated at threonine 389 and at threonine 421/serine 424. Phosphorylation of p70 S6 kinase and 4E-BP1 is also repressed by PI3K inhibitors as well as by rapamycin, the selective inhibitor of FRAP/mTOR. Consistent with these findings, DAMGO-stimulated phosphorylation of 4E-BP1 impairs its ability to bind the translation initiation factor eIF-4E. These results demonstrate that the mu-opioid receptor activates signaling pathways associated with neuronal survival and translational control, two processes implicated in neuronal development and synaptic plasticity.[1]


  1. mu-Opioid receptor activates signaling pathways implicated in cell survival and translational control. Polakiewicz, R.D., Schieferl, S.M., Gingras, A.C., Sonenberg, N., Comb, M.J. J. Biol. Chem. (1998) [Pubmed]
WikiGenes - Universities