The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Acid/base transport across the leech giant glial cell membrane at low external bicarbonate concentration.

1. We have studied acid/base transport across the cell membrane of the giant neuropile glial cell in the leech (Hirudo medicinalis) central nervous system induced by changing the external pH (pHo), using double-barrelled, pH-sensitive microelectrodes. In the presence of 5 % CO2 and 24 mM HCO3-, the intracellular pH (pHi) rapidly changes due to a potent, reversible Na+-HCO3- cotransport across the glial membrane. We have now investigated the transport mechanism which leads to pHi changes in the nominal absence of CO2/HCO3-, where the HCO3- concentration is expected to be below 1 mM. 2. The intracellular pH increased and then decreased when pHo was altered from 7.4 to 7.8 and then 7.0 with a rate of increase of +0.026 +/- 0.008 and a rate of decrease of -0.028 +/- 0.009 pH units min-1 (+/- s.d., n = 49), indicating an acid/base flux rate of 0.64 and 0.71 mM min-1 across the glial membrane, respectively. 3. In the absence of external sodium (Na+replaced by N-methyl-D-glucamine), pHi slowly decreased, and the rate of alkali and acid loading was reduced to 19 and 28 %, respectively, (n = 12). Amiloride (2 mM), which inhibits Na+-H+ exchange, had no effect on the alkali/acid loading (n = 6). 4. The alkali and acid loading were not impaired after the removal of external chloride (Cl-o, replaced by gluconate; n = 11), but were significantly reduced by the anion transport inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS, 0.5 mM) to 23 and 16 %, respectively, of the control (P < 0.001; n = 5). 5. Alkali and acid loading were affected differently by manipulating the availability of residual HCO3-. After adding the membrane-permeable carbonic anhydrase inhibitor ethoxyzolamide (EZA, 2 microM) to the saline, the acid loading, but not the alkali loading, was significantly reduced (by 25 %, P < 0.01), while lowering the residual CO2/HCO3- concentration in the saline by O2 bubbling significantly reduced the alkali loading (by 59 %, P < 0. 02), but not the acid loading. 6. Changing the membrane holding potential in voltage-clamped glial cells or raising the external K+ concentration to 30 mM had no significant effect on acid/base loading. 7. It is concluded that a residual HCO3- concentration of less than 1 mM in nominally CO2/HCO3--free salines and HCO3- produced endogenously in the glial cells support alkali and acid loading across the glial cell membrane, presumably by activation of the reversible Na+-HCO3- cotransporter. The results suggest a very high selectivity and affinity of this cotransporter for HCO3-; they imply that HCO3--dependent processes may not be negligible even in the nominal absence of CO2/HCO3-, when the HCO3- concentration is expected to be in the submillimolar range.[1]

References

 
WikiGenes - Universities