The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Formation and function of N-acetyloglucosamine-linked phosphoryl- and pyrophosphorylundecaprenols in membranes from Bacillus cereus.

Membranes from Bacillus cereus AHU 1356 incorporated radioactivity from UDP-N-acetyl[14C]glucosamine into three alkaline-stable and acid-labile lipids which were extracted into chloroform:methanol (2:1) and separated from each other by thin layer chromatography on silica gel plates. The major labeled lipid (Lipid 1) and a minor one (Lipid 2) were identified as N-actetylglucosaminyl phosphorylundecaprenol from several analytical criteria involving mass spectral data and from reversal of their formation by UDP. These two lipids appear to differ in geometry of their polyprenol moieties. The third labeled lipid (Lipid 3) was identified as N-acetylglucosaminyl pyrophosphorylundecaprenol. Antibiotic 24010, a tunicamycin-like antibiotic, at 1 microgram/ml was found to inhibit almost completely the formation of Lipid 3, whereas it inhibited the formation of Lipid 1 much more weakly and rather enhanced the formation of Lipid 2. Radioactivity was also incorporated into a polymer from UDP-GlcNAc and from Lipid 3. UDP-N-acetylmannosamine, UDP-N-acetylgalactosamine, and UDP-glucose supported the incorporation. Antibiotic 24010 strongly inhibited the incorporation of radioactivity from UDP-GlcNAc into polymer, whereas it did not affect the incorporation from Lipid 3. Thus, it is concluded that N-acetylglucosaminyl pyrophosphorylundecaprenol serves as a precursor in the synthesis of a polymer presumed as the cell wall polysaccharide of this bacterial strain.[1]

References

 
WikiGenes - Universities