The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AG-D-20603     3,7,11-trimethyldodeca- 2,6,10-trien-1-ol

Synonyms: AG-F-58838, KBioGR_001682, KBioSS_001762, ACMC-209ukw, ACMC-20aplp, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of farnesol

  • In vivo interaction between the polyprenol phosphate mannose synthase Ppm1 and the integral membrane protein Ppm2 from Mycobacterium smegmatis revealed by a bacterial two-hybrid system [1].
  • Rv3265c shows homology to the Escherichia coli gene wbbL, which encodes a dTDP-Rha:alpha-D-GlcNAc-pyrophosphate polyprenol, alpha-3-L-rhamnosyltransferase [2].
  • Tunicamycin is a reversible inhibitor of polyprenol-phosphate: N-acetylhexosamine-1-phosphate translocases and is produced by several Streptomyces species [3].
  • Prophylactic activity of dihydroheptaprenol, a synthetic polyprenol derivative, against Sendai virus infection in mice [4].
  • One of the five polyprenol preparations tested, preparation N1, which had the lowest hydrophilic-lipophilic balance (8.6), produced a significant protective effect when injected in a dose of 2000 microg/mouse 2 days before aerosol infection of mice with influenza virus [5].
 

High impact information on farnesol

 

Biological context of farnesol

 

Anatomical context of farnesol

 

Associations of farnesol with other chemical compounds

 

Gene context of farnesol

  • Our results suggest that the activities of two yeast cis-prenyltransferases Rer2p and Srt1p and polyprenol reductase are not co-regulated and that reductase may be the rate-limiting enzyme in dolichol synthesis if the amount of polyisoprenoids synthesized exceeds a certain level [25].
  • Evaluation of these compounds as potential substrates or inhibitors of a polyprenol monophosphomannose-dependent alpha-(1-->6)-mannosyltransferase involved in mycobacterial LAM biosynthesis demonstrated that the enzyme is somewhat tolerant substitution at this site [26].
 

Analytical, diagnostic and therapeutic context of farnesol

References

  1. In vivo interaction between the polyprenol phosphate mannose synthase Ppm1 and the integral membrane protein Ppm2 from Mycobacterium smegmatis revealed by a bacterial two-hybrid system. Baulard, A.R., Gurcha, S.S., Engohang-Ndong, J., Gouffi, K., Locht, C., Besra, G.S. J. Biol. Chem. (2003) [Pubmed]
  2. Inactivation of the mycobacterial rhamnosyltransferase, which is needed for the formation of the arabinogalactan-peptidoglycan linker, leads to irreversible loss of viability. Mills, J.A., Motichka, K., Jucker, M., Wu, H.P., Uhlik, B.C., Stern, R.J., Scherman, M.S., Vissa, V.D., Pan, F., Kundu, M., Ma, Y.F., McNeil, M. J. Biol. Chem. (2004) [Pubmed]
  3. Biosynthesis of tunicamycin and metabolic origin of the 11-carbon dialdose sugar, tunicamine. Tsvetanova, B.C., Kiemle, D.J., Price, N.P. J. Biol. Chem. (2002) [Pubmed]
  4. Prophylactic activity of dihydroheptaprenol, a synthetic polyprenol derivative, against Sendai virus infection in mice. Iida, J., Ishihara, C., Mizukoshi, N., Kitoh, K., Tsukidate, K., Katsu, K., Toyosawa, T., Azuma, I. Vaccine (1990) [Pubmed]
  5. Effect of intramuscularly injected polyprenols on influenza virus infection in mice. Safatov, A.S., Sergeev, A.N., Shishkina, L.N., Pyankov, O.V., Poryvaev, V.D., Bulychev, L.E., Petrishchenko, V.A., Pyankova, O.G., Zhukov, V.A., Ryzhikov, A.B., Boldyrev, A.N., Buryak, G.A., Raldugin, V.A., Kukina, T.P., Tolstikov, G.A. Antivir. Chem. Chemother. (2000) [Pubmed]
  6. A Chinese hamster ovary cell mutant F2A8 utilizes polyprenol rather than dolichol for its lipid-dependent asparagine-linked glycosylation reactions. Stoll, J., Rosenwald, A.G., Krag, S.S. J. Biol. Chem. (1988) [Pubmed]
  7. Separation of polyprenol and dolichol by monolithic silica capillary column chromatography. Bamba, T., Fukusaki, E., Minakuchi, H., Nakazawa, Y., Kobayashi, A. J. Lipid Res. (2005) [Pubmed]
  8. Enhancement of resistance to Escherichia coli infection in mice by dihydroheptaprenol, a synthetic polyprenol derivative. Araki, S., Kagaya, K., Kitoh, K., Kimura, M., Fukazawa, Y. Infect. Immun. (1987) [Pubmed]
  9. Novel mannose carrier in the trypanosomatid Crithidia fasciculata behaving as a short alpha-saturated polyprenyl phosphate. Quesada-Allue, L.A., Parodi, A.J. Biochem. J. (1983) [Pubmed]
  10. The presence of dolichol in a lipid diphosphate N-acetylglucosamine from Saccharomyces cerevisiae (baker's yeast). Reuvers, F., Boer, P., Hemming, F.W. Biochem. J. (1978) [Pubmed]
  11. Dolichyl monophosphate and its sugar derivatives in plants. Brett, C.T., Leloir, L.F. Biochem. J. (1977) [Pubmed]
  12. Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases. Price, N.P., Momany, F.A. Glycobiology (2005) [Pubmed]
  13. Mammalian glycosyltransferases prefer glycosyl phosphoryl dolichols rather than glycosyl phosphoryl polyprenols as substrates for oligosaccharyl synthesis. D'Souza-Schorey, C., McLachlan, K.R., Krag, S.S., Elbein, A.D. Arch. Biochem. Biophys. (1994) [Pubmed]
  14. Dolichol and polyprenol kinase activities in microsomes from etiolated rye seedlings. Rymerson, R.T., Carroll, K.K., Rip, J.W. Biochem. Cell Biol. (1992) [Pubmed]
  15. Long-chain polyprenols in gymnosperm plants. Swiezewska, E., Chojnacki, T. Acta Biochim. Pol. (1988) [Pubmed]
  16. The biosynthesis of crustacean chitin. Isolation and characterization of polyprenol-linked intermediates from brine shrimp microsomes. Horst, M.N. Arch. Biochem. Biophys. (1983) [Pubmed]
  17. Modulation of properties of phospholipid membranes by the long-chain polyprenol (C(160)). Janas, T., Walińska, K., Chojnacki, T., Swiezewska, E., Janas, T. Chem. Phys. Lipids (2000) [Pubmed]
  18. Hydrogenated polyprenol phosphates - exogenous lipid acceptors of glucose from UDP glucose in rat liver microsomes. Mańkowski, T., Sasak, W., Chojnacki, T. Biochem. Biophys. Res. Commun. (1975) [Pubmed]
  19. Enhancement of phagocytosis and bactericidal activity of neutrophils in miniature pigs by dihydroheptaprenol, a synthetic polyprenol derivative. Araki, S., Suzuki, M., Ogura, K., Kimura, M., Imamura, E., Kuniyasu, C., Kagaya, K., Fukazawa, Y. Microbiol. Immunol. (1989) [Pubmed]
  20. Glycosylation of endogenous proteins through dolichol derivatives in reticulocyte plasma membranes. Parodi, A.J., Martin-Barrientos, J. Biochim. Biophys. Acta (1977) [Pubmed]
  21. Yeast Saccharomyces cerevisiae has two cis-prenyltransferases with different properties and localizations. Implication for their distinct physiological roles in dolichol synthesis. Sato, M., Fujisaki, S., Sato, K., Nishimura, Y., Nakano, A. Genes Cells (2001) [Pubmed]
  22. Electrospray ionization mass spectrometry analysis of polyisoprenoid alcohols via Li+ cationization. D'Alexandri, F.L., Gozzo, F.C., Eberlin, M.N., Katzin, A.M. Anal. Biochem. (2006) [Pubmed]
  23. Cupaniol, a New branched polyprenol, from Cupania latifolia. Sakane, W., Hara, N., Fujimoto, Y., Takaishi, Y., Acuña, R., Osorio, C., Duque, C. Chem. Pharm. Bull. (2005) [Pubmed]
  24. Synthesis of a mannosyl phosphoryl polyprenol by the cellular slime mold Dictyostelium discoideum. Crean, E.V., Rossomando, E.F. Biochim. Biophys. Acta (1977) [Pubmed]
  25. Interplay between the cis-prenyltransferases and polyprenol reductase in the yeast Saccharomyces cerevisiae. Szkopinska, A., Swiezewska, E., Rytka, J. Biochimie (2006) [Pubmed]
  26. Modified mannose disaccharides as substrates and inhibitors of a polyprenol monophosphomannose-dependent alpha-(1-->6)-mannosyltransferase involved in mycobacterial lipoarabinomannan biosynthesis. Subramaniam, V., Gurcha, S.S., Besra, G.S., Lowary, T.L. Bioorg. Med. Chem. (2005) [Pubmed]
  27. Single polyprenol and dolichol isolation by semipreparative high-performance liquid chromatography technique. Carlson, T., Skorupinska-Tudek, K., Hertel, J., Chojnacki, T., Olsson, J.M., Swiezewska, E. J. Lipid Res. (2000) [Pubmed]
  28. High-resolution analysis of polyprenols by supercritical fluid chromatography. Bamba, T., Fukasaki, W., Kajiyama, S., Ute, K., Kitayama, T., Kobayashi, A. Journal of chromatography. A. (2001) [Pubmed]
 
WikiGenes - Universities