The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Bacillus cereus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bacillus cereus

 

High impact information on Bacillus cereus

  • High-resolution (1.5 A) crystal structure of phospholipase C from Bacillus cereus [6].
  • Upon digestion with Bacillus cereus phospholipase C, amphiphilic p63 is shown to lose its myristic acid label and to acquire concomitantly the characteristic electrophoretic mobility and solubility behavior of hydrophilic p63 [7].
  • Previous crystal structure analysis has revealed that a small beta-strand (Vb) is present in Bacillus cereus PI-PLC and is absent in the enzyme from L. monocytogenes [8].
  • To explore the evolutionary potential of these enzymes, we have subjected the Bacillus cereus MBL (BcII) to a directed evolution scheme, which resulted in an increased hydrolytic efficiency toward cephalexin [9].
  • The N-terminal domain shows an anticipated structural similarity to Bacillus cereus phosphatidylcholine-specific phospholipase C (PC-PLC) [10].
 

Chemical compound and disease context of Bacillus cereus

  • The phosphatidylcholine-hydrolysing phospholipase C (PLC) from Bacillus cereus, a monomeric protein containing 245 amino-acid residues, is similar to some of the corresponding mammalian proteins [6].
  • Crystal structure of the phosphatidylinositol-specific phospholipase C from Bacillus cereus in complex with myo-inositol [11].
  • A group of active-site metal coordinating inhibitors of zinc proteases (carboxypeptidase A, thermolysin, Bacillus cereus neutral protease, and angiotensin-converting enzyme) have been synthesized and their properties investigated [12].
  • The phosphatidylglycerol phosphate was made available to the surfactant enzyme in a coupled assay by hydrolysis of cardiolipin [1-(3-sn-phosphatidyl)-3-(3-sn-phosphatidyl)-sn-glycerol] by stereospecific cleavage with phospholipase C (phosphatidylcholine cholinephosphohydrolase, EC 3.1.4.3) from Bacillus cereus [13].
  • Exposure of cultured rat hepatocytes to exogenous Bacillus cereus sphingomyelinase (bSMase), a neutral SMase, or human placenta sphingomyelinase (hSMase), an acidic SMase (ASMase), generated similar ceramide levels in a dose-dependent manner [14].
 

Biological context of Bacillus cereus

 

Anatomical context of Bacillus cereus

  • Formation and function of N-acetyloglucosamine-linked phosphoryl- and pyrophosphorylundecaprenols in membranes from Bacillus cereus [19].
  • The ability of phospholipase C (Bacillus cereus) to lyse erythrocytes from human blood that had been stored under Transfusion Service conditions for up to 16 weeks has been examined [20].
  • On the other hand, phosphatidylinositol-specific phospholipase C isolated from Bacillus cereus was used to release alkaline phosphatase from plasma membrane [21].
  • Incubation of bovine CNS myelin with phospholipase C from Bacillus cereus under conditions that lead to extensive phospholipid degradation caused 10% of the myelin protein to be released from the membrane [22].
  • Phospholipids chiral at phosphorus. Stereochemical mechanism of reactions catalyzed by phosphatidylinositide-specific phospholipase C from Bacillus cereus and guinea pig uterus [23].
 

Gene context of Bacillus cereus

 

Analytical, diagnostic and therapeutic context of Bacillus cereus

References

  1. Innate immunity in insects: the role of multiple, endogenous serum lectins in the recognition of foreign invaders in the cockroach, Blaberus discoidalis. Wilson, R., Chen, C., Ratcliffe, N.A. J. Immunol. (1999) [Pubmed]
  2. Effects of phospholipase C on the Na+-Ca2+ exchange and Ca2+ permeability of cardiac sarcolemmal vesicles. Philipson, K.D., Frank, J.S., Nishimoto, A.Y. J. Biol. Chem. (1983) [Pubmed]
  3. Peptidoglycan N-acetylglucosamine deacetylases from Bacillus cereus, highly conserved proteins in Bacillus anthracis. Psylinakis, E., Boneca, I.G., Mavromatis, K., Deli, A., Hayhurst, E., Foster, S.J., Vårum, K.M., Bouriotis, V. J. Biol. Chem. (2005) [Pubmed]
  4. Interplay between lipids and viral glycoproteins during hemolysis and fusion by influenza virus. Huang, R.T., Uslu, G. J. Biol. Chem. (1986) [Pubmed]
  5. The smcL gene of Listeria ivanovii encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole. González-Zorn, B., Domínguez-Bernal, G., Suárez, M., Ripio, M.T., Vega, Y., Novella, S., Vázquez-Boland, J.A. Mol. Microbiol. (1999) [Pubmed]
  6. High-resolution (1.5 A) crystal structure of phospholipase C from Bacillus cereus. Hough, E., Hansen, L.K., Birknes, B., Jynge, K., Hansen, S., Hordvik, A., Little, C., Dodson, E., Derewenda, Z. Nature (1989) [Pubmed]
  7. The major surface protein of Leishmania promastigotes is anchored in the membrane by a myristic acid-labeled phospholipid. Etges, R., Bouvier, J., Bordier, C. EMBO J. (1986) [Pubmed]
  8. Listeria monocytogenes phosphatidylinositol-specific phospholipase C has evolved for virulence by greatly reduced activity on GPI anchors. Wei, Z., Zenewicz, L.A., Goldfine, H. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  9. Mimicking natural evolution in metallo-beta-lactamases through second-shell ligand mutations. Tomatis, P.E., Rasia, R.M., Segovia, L., Vila, A.J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  10. Structure of the key toxin in gas gangrene. Naylor, C.E., Eaton, J.T., Howells, A., Justin, N., Moss, D.S., Titball, R.W., Basak, A.K. Nat. Struct. Biol. (1998) [Pubmed]
  11. Crystal structure of the phosphatidylinositol-specific phospholipase C from Bacillus cereus in complex with myo-inositol. Heinz, D.W., Ryan, M., Bullock, T.L., Griffith, O.H. EMBO J. (1995) [Pubmed]
  12. Metal-coordinating substrate analogs as inhibitors of metalloenzymes. Holmquist, B., Vallee, B.L. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  13. Properties of an acid phosphatase in pulmonary surfactant. Benson, B.J. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  14. Human placenta sphingomyelinase, an exogenous acidic pH-optimum sphingomyelinase, induces oxidative stress, glutathione depletion, and apoptosis in rat hepatocytes. García-Ruiz, C., Marí, M., Morales, A., Colell, A., Ardite, E., Fernández-Checa, J.C. Hepatology (2000) [Pubmed]
  15. Localization of phosphatidylcholine in outer envelope membrane of spinach chloroplasts. Dorne, A.J., Joyard, J., Block, M.A., Douce, R. J. Cell Biol. (1985) [Pubmed]
  16. Kinetic model for surface-active enzymes based on the Langmuir adsorption isotherm: phospholipase C (Bacillus cereus) activity toward dimyristoyl phosphatidylcholine/detergent micelles. Burns, R.A., El-Sayed, M.Y., Roberts, M.F. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  17. NIH 3T3 cells stably transfected with the gene encoding phosphatidylcholine-hydrolyzing phospholipase C from Bacillus cereus acquire a transformed phenotype. Johansen, T., Bjørkøy, G., Overvatn, A., Diaz-Meco, M.T., Traavik, T., Moscat, J. Mol. Cell. Biol. (1994) [Pubmed]
  18. Mutations affecting the catalytic activity of Bacillus cereus 5/B/6 beta-lactamase II. Lim, H.M., Pène, J.J. J. Biol. Chem. (1989) [Pubmed]
  19. Formation and function of N-acetyloglucosamine-linked phosphoryl- and pyrophosphorylundecaprenols in membranes from Bacillus cereus. Yamamori, S., Murazumi, N., Araki, Y., Ito, E. J. Biol. Chem. (1978) [Pubmed]
  20. Lysis of erythrocytes from stored human blood by phospholipase C (Bacillus cereus). Little, C., Rumsby, M.G. Biochem. J. (1980) [Pubmed]
  21. Electrophoretic characterization of hepatic alkaline phosphatase released by phosphatidylinositol-specific phospholipase C. A comparison with liver membrane and serum-soluble forms. Kominami, T., Miki, A., Ikehara, Y. Biochem. J. (1985) [Pubmed]
  22. Release of proteins from the surface of bovine central nervous system myelin by salts and phospholipases. Smith, R., Braun, P.E. J. Neurochem. (1988) [Pubmed]
  23. Phospholipids chiral at phosphorus. Stereochemical mechanism of reactions catalyzed by phosphatidylinositide-specific phospholipase C from Bacillus cereus and guinea pig uterus. Lin, G.L., Bennett, C.F., Tsai, M.D. Biochemistry (1990) [Pubmed]
  24. Involvement of phosphatidylcholine-specific phospholipase C in platelet-derived growth factor-induced activation of the mitogen-activated protein kinase pathway in Rat-1 fibroblasts. van Dijk, M.C., Muriana, F.J., de Widt, J., Hilkmann, H., van Blitterswijk, W.J. J. Biol. Chem. (1997) [Pubmed]
  25. Prokaryotic members of a new family of putative helicases with similarity to transcription activator SNF2. Kolstø, A.B., Bork, P., Kvaløy, K., Lindback, T., Grønstadt, A., Kristensen, T., Sander, C. J. Mol. Biol. (1993) [Pubmed]
  26. Antibacterial effect of lactoperoxidase and myeloperoxidase against Bacillus cereus. Tenovuo, J., Mäkinen, K.K., Sievers, G. Antimicrob. Agents Chemother. (1985) [Pubmed]
  27. Cloning and sequencing of the beta-lactamase I gene of Bacillus cereus 5/B and its expression in Bacillus subtilis. Wang, W., Mézes, P.S., Yang, Y.Q., Blacher, R.W., Lampen, J.O. J. Bacteriol. (1985) [Pubmed]
  28. Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. Chen, Y., Succi, J., Tenover, F.C., Koehler, T.M. J. Bacteriol. (2003) [Pubmed]
  29. Molecular cloning and nucleotide sequence of the type I beta-lactamase gene from Bacillus cereus. Sloma, A., Gross, M. Nucleic Acids Res. (1983) [Pubmed]
  30. Probing the roles of active site residues in phosphatidylinositol-specific phospholipase C from Bacillus cereus by site-directed mutagenesis. Gässler, C.S., Ryan, M., Liu, T., Griffith, O.H., Heinz, D.W. Biochemistry (1997) [Pubmed]
  31. Crystallization of phosphatidylinositol-specific phospholipase C from Bacillus cereus. Bullock, T.L., Ryan, M., Kim, S.L., Remington, S.J., Griffith, O.H. Biophys. J. (1993) [Pubmed]
  32. A novel bicomponent hemolysin from Bacillus cereus. Beecher, D.J., MacMillan, J.D. Infect. Immun. (1990) [Pubmed]
  33. Purification by affinity chromatography of phospholipase C from Bacillus cereus. Little, C., Aurebekk, B., Otnaess, A.B. FEBS Lett. (1975) [Pubmed]
 
WikiGenes - Universities