The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Comparing versions

Your are comparing two versions of this article:
- Newer version: 2011.11.03 18:24:27 GMT
- Older version: 2011.11.03 14:03:39 GMT

Differences between both versions are highlighted.
- Text added in the newer version is highlighted and underlined.
- Text removed in the newer version is highlighted and striked through.
 
(For the current version  click here.)
Gene Review

LGALS1  -  lectin, galactoside-binding, soluble, 1

Homo sapiens

Synonyms: 14 kDa laminin-binding protein, 14 kDa lectin, Beta-galactoside-binding lectin L-14-I, GAL1, GBP, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of LGALS1

 

Psychiatry related information on LGALS1

 

High impact information on LGALS1

 

Chemical compound and disease context of LGALS1

 

Biological context of LGALS1

  • The genomic DNA encoding L-14-II (LGALS2) contains four exons with similar intron placement to L-14-I (LGALS1); but the genomic upstream region, which contains several sequences characteristic of regulatory elements, differs significantly from L-14-I [18].
  • Two members of the S-lac lectin gene family, LGALS1 and LGALS2, reside in close proximity on human chromosome 22q12-q13 [19].
  • Investigation of haplotype structure within the LGALS1 locus revealed five common haplotypes covering more than 95% of the test population [20].
  • Resting T cells also bound galectin-1, but did not undergo apoptosis [11].
  • Of importance for understanding the complex galectin network, it teaches the lesson that selection of cell surface ligands, route of signaling, and effects on regulators of cell cycle progression are markedly different between structurally closely related galectins [21].
 

Anatomical context of LGALS1

 

Associations of LGALS1 with chemical compounds

  • Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death [25].
  • In contrast to galectin-1, the glycoproteins CD3 and CD7 are not ligands, while the shared affinity to beta1 integrin (or a closely associated glycoprotein) accounts for a substantial extent of cell surface binding [21].
  • In addition, the exposure of phosphatidylserine on the surface of galectin-1-treated cells occurred very rapidly [22].
  • In a solid-phase binding assay, human recombinant galectin-1 bound immobilized human recombinant 90K in a fashion that was inhibitable by lactose [26].
  • RESULTS: Gal-1 dramatically inhibited CY/G-CSF-induced HPC migration to the periphery as well as decreased peripheral neutrophilia and monocytosis in a dose- and time-dependent manner [27].
  • The pseudopolyrotaxanes rapidly and efficiently precipitate Gal-1 and provide valency-corrected enhancements of up to 30-fold compared to native lactose and 20-fold over free LCD in a T-cell agglutination assay [28].
 

Physical interactions of LGALS1

  • Receptor tyrosine phosphatase, CD45 binds galectin-1 but does not mediate its apoptotic signal in T cell lines [29].
  • We have found that galectin-1 binding to human T cell lines triggered rapid translocation of endonuclease G from mitochondria to nuclei [30].
  • Moreover, galectin-1 binding clustered CD43 modified with either core 1 or core 2 O-glycans on the T cell surface [31].
  • Since anti-CBP70 was immunologically cross-reactive to np56, it is concluded that the galectin GCA binds to np56 via similar mechanisms as reported previously for the interaction of CBP-35 (galectin-3) and CBP-70 [32].
  • We also found that galectin-3 interacted with Gemin4 and that it constituted one component of the complex co-immunoprecipitated with galectin-1 [33].
 

Regulatory relationships of LGALS1

 

Other interactions of LGALS1

  • Involvement of CD2 and CD3 in galectin-1 induced signaling in human Jurkat T-cells [34].
  • Moreover, the CD45 deficient Jurkat variant, J45.01 responds readily with tyrosine phosphorylation and subsequent apoptosis to galectin-1 treatment in a similar degree as its wild type counterpart, Jurkat does [29].
  • In addition, CD7 that is required for galectin-1-induced death is not required for death triggered by galectin-3 [25].
  • As an addition to the genetic information about LGALS2 reported earlier, we provide here a map of polymorphic sites within an 11-kb region containing the gene encoding a closely related molecule, galectin-1 (lectin, galactoside-binding, soluble, 1; LGALS1) [20].
  • In this study, a marked increase in IL-10 mRNA and protein levels was demonstrated in non-activated and activated CD4(+) and CD8(+) T-cells, following treatment with a high concentration (dimeric form), but not a low concentration (monomeric form), of recombinant galectin-1 protein [23].
  • Galectin-1 had no effect on phosphorylation of Smad3 at the linker region and C-terminus, whereas it decreased affinity of Smad3 to the SBE [36].
 

Analytical, diagnostic and therapeutic context of LGALS1

References

  1. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege. Rubinstein, N., Alvarez, M., Zwirner, N.W., Toscano, M.A., Ilarregui, J.M., Bravo, A., Mordoh, J., Fainboim, L., Podhajcer, O.L., Rabinovich, G.A. Cancer. Cell. (2004) [Pubmed]
  2. Altered T cell surface glycosylation in HIV-1 infection results in increased susceptibility to galectin-1-induced cell death. Lantéri, M., Giordanengo, V., Hiraoka, N., Fuzibet, J.G., Auberger, P., Fukuda, M., Baum, L.G., Lefebvre, J.C. Glycobiology (2003) [Pubmed]
  3. Regulation of CD45-induced signaling by galectin-1 in Burkitt lymphoma B cells. Fouillit, M., Joubert-Caron, R., Poirier, F., Bourin, P., Monostori, E., Levi-Strauss, M., Raphael, M., Bladier, D., Caron, M. Glycobiology (2000) [Pubmed]
  4. Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. Levroney, E.L., Aguilar, H.C., Fulcher, J.A., Kohatsu, L., Pace, K.E., Pang, M., Gurney, K.B., Baum, L.G., Lee, B. J. Immunol. (2005) [Pubmed]
  5. Galectin-1 modulates human glioblastoma cell migration into the brain through modifications to the actin cytoskeleton and levels of expression of small GTPases. Camby, I., Belot, N., Lefranc, F., Sadeghi, N., de Launoit, Y., Kaltner, H., Musette, S., Darro, F., Danguy, A., Salmon, I., Gabius, H.J., Kiss, R. J. Neuropathol. Exp. Neurol. (2002) [Pubmed]
  6. Proteomic investigation of glioblastoma cell lines treated with wild-type p53 and cytotoxic chemotherapy demonstrates an association between galectin-1 and p53 expression. Puchades, M., Nilsson, C.L., Emmett, M.R., Aldape, K.D., Ji, Y., Lang, F.F., Liu, T.J., Conrad, C.A. J. Proteome Res. (2007) [Pubmed]
  7. O-glycosylation regulates LNCaP prostate cancer cell susceptibility to apoptosis induced by galectin-1. Valenzuela, H.F., Pace, K.E., Cabrera, P.V., White, R., Porvari, K., Kaija, H., Vihko, P., Baum, L.G. Cancer Res. (2007) [Pubmed]
  8. Haloperidol and reduced haloperidol serum levels: correlation with psychopathology in acute schizophrenia. Stevens, A., Mahal, A., Gaertner, H.J. Pharmacopsychiatry (1992) [Pubmed]
  9. Low maximal oxygen uptake is associated with elevated depressive symptoms in middle-aged men. Tolmunen, T., Laukkanen, J.A., Hintikka, J., Kurl, S., Viinam??ki, H., Salonen, R., Kauhanen, J., Kaplan, G.A., Salonen, J.T. Eur. J. Epidemiol. (2006) [Pubmed]
  10. A secreted glycoprotein induced by estrogen in human breast cancer cell lines. Westley, B., Rochefort, H. Cell (1980) [Pubmed]
  11. Apoptosis of T cells mediated by galectin-1. Perillo, N.L., Pace, K.E., Seilhamer, J.J., Baum, L.G. Nature (1995) [Pubmed]
  12. Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Shen, J., Person, M.D., Zhu, J., Abbruzzese, J.L., Li, D. Cancer Res. (2004) [Pubmed]
  13. Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. Kopitz, J., von Reitzenstein, C., André, S., Kaltner, H., Uhl, J., Ehemann, V., Cantz, M., Gabius, H.J. J. Biol. Chem. (2001) [Pubmed]
  14. Alpha-melanocyte-stimulating hormone reduces impact of proinflammatory cytokine and peroxide-generated oxidative stress on keratinocyte and melanoma cell lines. Haycock, J.W., Rowe, S.J., Cartledge, S., Wyatt, A., Ghanem, G., Morandini, R., Rennie, I.G., MacNeil, S. J. Biol. Chem. (2000) [Pubmed]
  15. Targets of extinction: identification of genes whose expression is repressed as a consequence of somatic fusion between cells representing basal and luminal mammary epithelial phenotypes. MacDougall, J.R., Matrisian, L.M. J. Cell. Sci. (2000) [Pubmed]
  16. Crystallization and preliminary X-ray diffraction analysis of the human dimeric S-Lac lectin (L-14-II). Lobsanov, Y.D., Gitt, M.A., Leffler, H., Barondes, S., Rini, J.M. J. Mol. Biol. (1993) [Pubmed]
  17. AP1-dependent galectin-1 expression delineates classical hodgkin and anaplastic large cell lymphomas from other lymphoid malignancies with shared molecular features. Rodig, S.J., Ouyang, J., Juszczynski, P., Currie, T., Law, K., Neuberg, D.S., Rabinovich, G.A., Shipp, M.A., Kutok, J.L. Clin. Cancer Res. (2008) [Pubmed]
  18. Isolation and expression of a gene encoding L-14-II, a new human soluble lactose-binding lectin. Gitt, M.A., Massa, S.M., Leffler, H., Barondes, S.H. J. Biol. Chem. (1992) [Pubmed]
  19. Two members of the S-lac lectin gene family, LGALS1 and LGALS2, reside in close proximity on human chromosome 22q12-q13. Mehrabian, M., Gitt, M.A., Sparkes, R.S., Leffler, H., Barondes, S.H., Lusis, A.J. Genomics (1993) [Pubmed]
  20. Fine-scale SNP map of an 11-kb genomic region at 22q13.1 containing the galectin-1 gene. Iida, A., Ozaki, K., Tanaka, T., Nakamura, Y. J. Hum. Genet. (2005) [Pubmed]
  21. Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. Sturm, A., Lensch, M., André, S., Kaltner, H., Wiedenmann, B., Rosewicz, S., Dignass, A.U., Gabius, H.J. J. Immunol. (2004) [Pubmed]
  22. Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. Pace, K.E., Lee, C., Stewart, P.L., Baum, L.G. J. Immunol. (1999) [Pubmed]
  23. Dimeric galectin-1 induces IL-10 production in T-lymphocytes: an important tool in the regulation of the immune response. van der Leij, J., van den Berg, A., Blokzijl, T., Harms, G., van Goor, H., Zwiers, P., van Weeghel, R., Poppema, S., Visser, L. J. Pathol. (2004) [Pubmed]
  24. Potential roles of galectins in myeloid differentiation into three different lineages. Abedin, M.J., Kashio, Y., Seki, M., Nakamura, K., Hirashima, M. J. Leukoc. Biol. (2003) [Pubmed]
  25. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. Stillman, B.N., Hsu, D.K., Pang, M., Brewer, C.F., Johnson, P., Liu, F.T., Baum, L.G. J. Immunol. (2006) [Pubmed]
  26. Glycoprotein 90K/MAC-2BP interacts with galectin-1 and mediates galectin-1-induced cell aggregation. Tinari, N., Kuwabara, I., Huflejt, M.E., Shen, P.F., Iacobelli, S., Liu, F.T. Int. J. Cancer (2001) [Pubmed]
  27. A novel anti-inflammatory function of human galectin-1: inhibition of hematopoietic progenitor cell mobilization. Kiss, J., Kunstár, A., Fajka-Boja, R., Dudics, V., Tóvári, J., Légrádi, A., Monostori, E., Uher, F. Exp. Hematol. (2007) [Pubmed]
  28. Multivalent interactions between lectins and supramolecular complexes: Galectin-1 and self-assembled pseudopolyrotaxanes. Belitsky, J.M., Nelson, A., Hernandez, J.D., Baum, L.G., Stoddart, J.F. Chem. Biol. (2007) [Pubmed]
  29. Receptor tyrosine phosphatase, CD45 binds galectin-1 but does not mediate its apoptotic signal in T cell lines. Fajka-Boja, R., Szemes, M., Ion, G., Légrádi, A., Caron, M., Monostori, E. Immunol. Lett. (2002) [Pubmed]
  30. Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Hahn, H.P., Pang, M., He, J., Hernandez, J.D., Yang, R.Y., Li, L.Y., Wang, X., Liu, F.T., Baum, L.G. Cell Death Differ. (2004) [Pubmed]
  31. Galectin-1 Binds Different CD43 Glycoforms to Cluster CD43 and Regulate T Cell Death. Hernandez, J.D., Nguyen, J.T., He, J., Wang, W., Ardman, B., Green, J.M., Fukuda, M., Baum, L.G. J. Immunol. (2006) [Pubmed]
  32. Forssman disaccharide is the specific ligand of a galectin from the sponge Geodia cydonium but does not mediate its binding to nuclear protein np56. Hanisch, F.G., Baldus, S.E., Kümmel, T.A. Glycobiology (1996) [Pubmed]
  33. Association of galectin-1 and galectin-3 with Gemin4 in complexes containing the SMN protein. Park, J.W., Voss, P.G., Grabski, S., Wang, J.L., Patterson, R.J. Nucleic Acids Res. (2001) [Pubmed]
  34. Involvement of CD2 and CD3 in galectin-1 induced signaling in human Jurkat T-cells. Walzel, H., Blach, M., Hirabayashi, J., Kasai, K.I., Brock, J. Glycobiology (2000) [Pubmed]
  35. CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death. Pace, K.E., Hahn, H.P., Pang, M., Nguyen, J.T., Baum, L.G. J. Immunol. (2000) [Pubmed]
  36. Galectin-1 suppresses alpha2(I) collagen through Smad3 in renal epithelial cells. Okano, K., Uchida, K., Nitta, K., Hayashida, T. Cell. Mol. Life Sci. (2008) [Pubmed]
  37. Molecular cloning, characterization, and expression of a human 14-kDa lectin. Couraud, P.O., Casentini-Borocz, D., Bringman, T.S., Griffith, J., McGrogan, M., Nedwin, G.E. J. Biol. Chem. (1989) [Pubmed]
 
WikiGenes - Universities