The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Trimedoxime     (NZ)-N-[[1-[3-[4-[(Z)- hydroxyiminomethyl]...

Synonyms:
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Trimedoxime

 

Psychiatry related information on Trimedoxime

 

High impact information on Trimedoxime

 

Biological context of Trimedoxime

  • Trimedoxime (24 mg/kg intravenously) was injected 5 min. before 1.3 LD50 intravenously of poisons [11].
 

Associations of Trimedoxime with other chemical compounds

 

Gene context of Trimedoxime

  • In essence, the substitution pattern influenced the inhibitory potency against AChE, where the most active bispyridiniumoxime (TMB-4) was bisbenzyl substituted followed by monobenzyl substituted, bismethyl substituted, and unsubstituted derivatives of TMB-4 [15].
  • Mono- and bisbenzyloxime ethers of the bispyridinium derivative TMB-4 (UNO, DUO) are potent allosteric modulators of the muscarinic receptor attracting clinical interest in case of organophosphate poisoning [16].
  • These organophosphorus compounds produced a significant inhibition of plasma carboxylesterase activity, while administration of trimedoxime led to regeneration of the enzyme activity [11].
  • Various oximes (PAM, toxogonin, TMB-4, HS-6, HI-6, HGG-12, HGG-42) combined with atropine were compared as antidotes of soman, sarin and tabun poisoning in non-fasted CD-1 male mice [17].

References

  1. Studies of the amplification of carbaryl toxicity by various oximes. Lieske, C.N., Clark, J.H., Maxwell, D.M., Zoeffel, L.D., Sultan, W.E. Toxicol. Lett. (1992) [Pubmed]
  2. Specification of the structure of oximes able to reactivate tabun-inhibited acetylcholinesterase. Cabal, J., Kuca, K., Kassa, J. Basic & clinical pharmacology & toxicology. (2004) [Pubmed]
  3. Effects of atropine, trimedoxime and methylprednisolone on the development of organophosphate-induced delayed polyneuropathy in the hen. Jokanović, M., Stepanović Petrović, R.M., Maksimović, M., Jovanovic, D., Kosanović, M., Piperski, V. Experimental and toxicologic pathology : official journal of the Gesellschaft für Toxikologische Pathologie. (2001) [Pubmed]
  4. The treatment of delayed polyneuropathy induced by diisopropylfluorophosphate in hens. Petrović, R.M., Jokanović, M., Maksimović, M., Ugresić, N., Bosković, B. Die Pharmazie. (2000) [Pubmed]
  5. Behavioral comparison of the oximes TMB-4, 2-PAM, and HI-6 in rats using operant conditioning. Genovese, R.F., Doctor, B.P. Pharmacol. Biochem. Behav. (1997) [Pubmed]
  6. Oxime effects on the rate constants of carbamylation and decarbamylation of acetylcholinesterase for pyridostigmine, physostigmine and insecticidal carbamates. Dawson, R.M. Neurochem. Int. (1995) [Pubmed]
  7. Stability studies of bis(pyridiniumaldoxime) reactivators of organophosphate-inhibited acetylcholinesterase. Lin, A.J., Klayman, D.L. Journal of pharmaceutical sciences. (1986) [Pubmed]
  8. In vitro potency of H oximes (HI-6, HLö-7), the oxime BI-6, and currently used oximes (pralidoxime, obidoxime, trimedoxime) to reactivate nerve agent-inhibited rat brain acetylcholinesterase. Kuca, K., Cabal, J., Kassa, J., Jun, D., Hrabinova, M. J. Toxicol. Environ. Health Part A (2006) [Pubmed]
  9. In vitro and in vivo evaluation of pyridinium oximes: mode of interaction with acetylcholinesterase, effect on tabun- and soman-poisoned mice and their cytotoxicity. Calić, M., Vrdoljak, A.L., Radić, B., Jelić, D., Jun, D., Kuca, K., Kovarik, Z. Toxicology (2006) [Pubmed]
  10. Influence of trimedoxime bromide on degradation of benactyzine in acidic injectable solutions. Rubnov, S., Amisar, S., Lomnicky, Y., Schneider, H. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. (1999) [Pubmed]
  11. Efficacy of trimedoxime in mice poisoned with dichlorvos, heptenophos or monocrotophos. Antonijević, B., Bokonjić, D., Stojiljković, M.P., Kilibarda, V., Milovanović, Z.A., Nedeljković, M., Maksimović, M. Basic & clinical pharmacology & toxicology. (2005) [Pubmed]
  12. Cardiotonic drugs inhibit purified mammalian acetylcholinesterase. Hanke, D.W., Nelson, M.E., Baskin, S.I. Journal of applied toxicology : JAT. (1991) [Pubmed]
  13. In vitro reactivation potency of some acetylcholinesterase reactivators against sarin- and cyclosarin-induced inhibitions. Kuca, K., Cabal, J., Jun, D., Kassa, J., Bartosová, L., Kunesová, G. Journal of applied toxicology : JAT. (2005) [Pubmed]
  14. Soman induced changes in brain regional glucose use. Samson, F.E., Pazdernik, T.L., Cross, R.S., Giesler, M.P., Mewes, K., Nelson, S.R., McDonough, J.H. Fundamental and applied toxicology : official journal of the Society of Toxicology. (1984) [Pubmed]
  15. Synthesis, biological activity, and docking studies of new acetylcholinesterase inhibitors of the bispyridinium type. Kapková, P., Stiefl, N., Sürig, U., Engels, B., Baumann, K., Holzgrabe, U. Arch. Pharm. (Weinheim) (2003) [Pubmed]
  16. Stability of mono- and bisbenzyloxime ethers of the acetylcholinesterase reactivator TMB-4. Inkmann, E., Holzgrabe, U., Hesse, K.F. Die Pharmazie. (1997) [Pubmed]
  17. Efficacy of mono- and bis-pyridinium oximes versus soman, sarin and tabun poisoning in mice. Clement, J.G. Fundamental and applied toxicology : official journal of the Society of Toxicology. (1983) [Pubmed]
 
WikiGenes - Universities