The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

pagA  -  protective antigen

Bacillus anthracis str. Ames Ancestor

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of pagA

  • We studied the effects on Bacillus anthracis growth and the virulence gene (pagA, lef, and cya) expression of the QS inhibitor (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone, which is naturally synthesized by the marine alga Delisea pulchra, as well as a related compound and synthetic derivatives [1].
  • Through quantitative reverse transcription-PCR assays, this toxin-inhibitory effect was shown to occur at the transcriptional level, since amounts of mRNA for pagA (PA), lef (LF), and cya (edema factor) were reduced [2].
  • Protective antigen (PA) is a central virulence factor of Bacillus anthracis and a key component in anthrax vaccines [3].
 

High impact information on pagA

  • Protective antigen (PA), the third component, binds to a cellular receptor and mediates delivery of the enzymatic components to the cytosol [4].
  • Protective antigen (PA) is the central component of the three-part protein toxin secreted by Bacillus anthracis, the organism responsible for anthrax [5].
  • Protective antigen (PA) is a component of the Bacillus anthracis lethal and edema toxins and the basis of the current anthrax vaccine [6].
  • We sequenced the protective antigen gene (pagA) from 42 representative outbreak isolates and determined they all had a pagA sequence indistinguishable from the Ames strain (PA genotype I) [7].
  • When furanones were added to midlog-phase cultures of B. anthracis strains with LacZ reporters in pagA, lef, or cya, growth was inhibited, and expression of these virulence genes was inhibited to a proportionately greater extent [1].
 

Chemical compound and disease context of pagA

 

Biological context of pagA

  • This region contains the three toxin genes (cya, lef, and pagA), regulatory elements controlling the toxin genes, three germination response genes, and 19 additional ORFs [9].
  • In an effort to produce anthrax vaccine in large quantities and free of extraneous bacterial contaminants, PA was expressed in transgenic tobacco chloroplasts by inserting the pagA gene into the chloroplast genome [10].
  • Here we show that a 300-bp gene located downstream of pagA is cotranscribed with pagA and represses expression of the operon [11].
  • Eight tested isolates possessed the pagA and capB genes indicating the presence of both virulence plasmids, while two isolates revealed only pagA and lacked pXO2 [12].
  • Protective antigen-mediated antibody response against a heterologous protein produced in vivo by Bacillus anthracis [13].
 

Anatomical context of pagA

 

Other interactions of pagA

  • Autogenous control of the operon may involve atxA, a trans-acting positive regulator of pagA [11].
  • The gene encoding the protective antigen (pagA) was detected in 29 of 29 virulent B. anthracis strains, and the gene encoding the capsular protein B (capB) was detected in 28 of 29 of the same strains [16].
  • A pagR mutant exhibited increased steady-state levels of pagA mRNA, indicating that pagR negatively controls expression of the operon [11].
 

Analytical, diagnostic and therapeutic context of pagA

References

  1. Inhibition of Bacillus anthracis growth and virulence-gene expression by inhibitors of quorum-sensing. Jones, M.B., Jani, R., Ren, D., Wood, T.K., Blaser, M.J. J. Infect. Dis. (2005) [Pubmed]
  2. Glycerol monolaurate inhibits virulence factor production in Bacillus anthracis. Vetter, S.M., Schlievert, P.M. Antimicrob. Agents Chemother. (2005) [Pubmed]
  3. Effects of spontaneous deamidation on the cytotoxic activity of the Bacillus anthracis protective antigen. Zomber, G., Reuveny, S., Garti, N., Shafferman, A., Elhanany, E. J. Biol. Chem. (2005) [Pubmed]
  4. Identification of the cellular receptor for anthrax toxin. Bradley, K.A., Mogridge, J., Mourez, M., Collier, R.J., Young, J.A. Nature (2001) [Pubmed]
  5. Crystal structure of the anthrax toxin protective antigen. Petosa, C., Collier, R.J., Klimpel, K.R., Leppla, S.H., Liddington, R.C. Nature (1997) [Pubmed]
  6. Production of Bacillus anthracis protective antigen is dependent on the extracellular chaperone, PrsA. Williams, R.C., Rees, M.L., Jacobs, M.F., Prágai, Z., Thwaite, J.E., Baillie, L.W., Emmerson, P.T., Harwood, C.R. J. Biol. Chem. (2003) [Pubmed]
  7. Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States. Hoffmaster, A.R., Fitzgerald, C.C., Ribot, E., Mayer, L.W., Popovic, T. Emerging Infect. Dis. (2002) [Pubmed]
  8. Selection of Anthrax Toxin Protective Antigen Variants That Discriminate between the Cellular Receptors TEM8 and CMG2 and Achieve Targeting of Tumor Cells. Chen, K.H., Liu, S., Bankston, L.A., Liddington, R.C., Leppla, S.H. J. Biol. Chem. (2007) [Pubmed]
  9. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. Okinaka, R.T., Cloud, K., Hampton, O., Hoffmaster, A.R., Hill, K.K., Keim, P., Koehler, T.M., Lamke, G., Kumano, S., Mahillon, J., Manter, D., Martinez, Y., Ricke, D., Svensson, R., Jackson, P.J. J. Bacteriol. (1999) [Pubmed]
  10. Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Koya, V., Moayeri, M., Leppla, S.H., Daniell, H. Infect. Immun. (2005) [Pubmed]
  11. Autogenous regulation of the Bacillus anthracis pag operon. Hoffmaster, A.R., Koehler, T.M. J. Bacteriol. (1999) [Pubmed]
  12. Intriguing diversity of Bacillus anthracis in eastern Poland--the molecular echoes of the past outbreaks. Gierczyński, R., Kałuzewski, S., Rakin, A., Jagielski, M., Zasada, A., Jakubczak, A., Borkowska-Opacka, B., Rastawicki, W. FEMS Microbiol. Lett. (2004) [Pubmed]
  13. Protective antigen-mediated antibody response against a heterologous protein produced in vivo by Bacillus anthracis. Brossier, F., Weber-Levy, M., Mock, M., Sirard, J.C. Infect. Immun. (2000) [Pubmed]
  14. Antigen-Specific CD4+ T Cells Recognize Epitopes of Protective Antigen following Vaccination with an Anthrax Vaccine. Laughlin, E.M., Miller, J.D., James, E., Fillos, D., Ibegbu, C.C., Mittler, R.S., Akondy, R., Kwok, W., Ahmed, R., Nepom, G. Infect. Immun. (2007) [Pubmed]
  15. Knock-on effect of anthrax lethal toxin on macrophages potentiates cytotoxicity to endothelial cells. Pandey, J., Warburton, D. Microbes Infect. (2004) [Pubmed]
  16. Detection of Bacillus anthracis DNA by LightCycler PCR. Bell, C.A., Uhl, J.R., Hadfield, T.L., David, J.C., Meyer, R.F., Smith, T.F., Cockerill, F.R. J. Clin. Microbiol. (2002) [Pubmed]
  17. Contribution of immunological memory to protective immunity conferred by a Bacillus anthracis protective antigen-based vaccine. Marcus, H., Danieli, R., Epstein, E., Velan, B., Shafferman, A., Reuveny, S. Infect. Immun. (2004) [Pubmed]
  18. Protective antigen as a correlative marker for anthrax in animal models. Kobiler, D., Weiss, S., Levy, H., Fisher, M., Mechaly, A., Pass, A., Altboum, Z. Infect. Immun. (2006) [Pubmed]
  19. Protective antigen and toxin neutralization antibody patterns in anthrax vaccinees undergoing serial plasmapheresis. Pittman, P.R., Leitman, S.F., Oro, J.G., Norris, S.L., Marano, N.M., Ranadive, M.V., Sink, B.S., McKee, K.T. Clin. Diagn. Lab. Immunol. (2005) [Pubmed]
 
WikiGenes - Universities