The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Myasthenia Gravis, Autoimmune, Experimental

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Myasthenia Gravis, Autoimmune, Experimental


High impact information on Myasthenia Gravis, Autoimmune, Experimental


Chemical compound and disease context of Myasthenia Gravis, Autoimmune, Experimental


Anatomical context of Myasthenia Gravis, Autoimmune, Experimental


Gene context of Myasthenia Gravis, Autoimmune, Experimental


Analytical, diagnostic and therapeutic context of Myasthenia Gravis, Autoimmune, Experimental


  1. Antibodies against nicotinic acetylcholine receptor and skeletal muscle in human and experimental myasthenia gravis. Aarli, J.A., Mattsson, C., Heilbronn, E. Scand. J. Immunol. (1975) [Pubmed]
  2. Suppression of experimental myasthenia gravis, a B cell-mediated autoimmune disease, by blockade of IL-18. Im, S.H., Barchan, D., Maiti, P.K., Raveh, L., Souroujon, M.C., Fuchs, S. FASEB J. (2001) [Pubmed]
  3. Dimethyl sulphoxide reduces anti-receptor antibody titres in experimental myasthenia gravis. Pestronk, A., Drachman, D.B. Nature (1980) [Pubmed]
  4. Suppression of ongoing experimental myasthenia by oral treatment with an acetylcholine receptor recombinant fragment. Im, S.H., Barchan, D., Fuchs, S., Souroujon, M.C. J. Clin. Invest. (1999) [Pubmed]
  5. Muscle responds to an antibody reactive with the acetylcholine receptor by up-regulating monocyte chemoattractant protein 1: a chemokine with the potential to influence the severity and course of experimental myasthenia gravis. Reyes-Reyna, S., Stegall, T., Krolick, K.A. J. Immunol. (2002) [Pubmed]
  6. Absence of IFN-gamma or IL-12 has different effects on experimental myasthenia gravis in C57BL/6 mice. Karachunski, P.I., Ostlie, N.S., Monfardini, C., Conti-Fine, B.M. J. Immunol. (2000) [Pubmed]
  7. IFN-alpha therapy is effective in suppressing the clinical experimental myasthenia gravis. Deng, C., Goluszko, E., Baron, S., Wu, B., Christadoss, P. J. Immunol. (1996) [Pubmed]
  8. Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. Biesecker, G., Gomez, C.M. J. Immunol. (1989) [Pubmed]
  9. Ampicillin may aggravate clinical and experimental myasthenia gravis. Argov, Z., Brenner, T., Abramsky, O. Arch. Neurol. (1986) [Pubmed]
  10. Treatment of experimental myasthenia with autologous idiotypes linked to muramyl dipeptide. Valderrama, R., Eggers, A.E., Moomjy, M., Kao, P.N., Michl, J. Clin. Exp. Immunol. (1988) [Pubmed]
  11. Dimethyl sulfoxide does not suppress the clinical manifestations of collagen arthritis. Trentham, D.E., Rowland, D. J. Rheumatol. (1983) [Pubmed]
  12. Treatment of ongoing experimental myasthenia gravis with short term high dose cyclophosphamide. Pestronk, A., Drachman, D.B., Adams, R.N. Muscle Nerve (1982) [Pubmed]
  13. Myocytes respond in vivo to an antibody reactive with the acetylcholine receptor by upregulating interleukin-15: an interferon-gamma activator with the potential to influence the severity and course of experimental myasthenia gravis. Stegall, T., Krolick, K.A. J. Neuroimmunol. (2001) [Pubmed]
  14. An immunodominant site of acetylcholine receptor in experimental myasthenia mapped with T lymphocyte clones and synthetic peptides. Pachner, A.R., Kantor, F.S., Mulac-Jericevic, B., Atassi, M.Z. Immunol. Lett. (1989) [Pubmed]
  15. Myocytes respond to both interleukin-4 and interferon-gamma: cytokine responsiveness with the potential to influence the severity and course of experimental myasthenia gravis. Stegall, T., Krolick, K.A. Clin. Immunol. (2000) [Pubmed]
  16. Interleukin-4 deficiency facilitates development of experimental myasthenia gravis and precludes its prevention by nasal administration of CD4+ epitope sequences of the acetylcholine receptor. Karachunski, P.I., Ostlie, N.S., Okita, D.K., Conti-Fine, B.M. J. Neuroimmunol. (1999) [Pubmed]
  17. Cathepsin S is not crucial to TSHR processing and presentation in a murine model of Graves' disease. Kala, M., Chen, C.R., McLachlan, S.M., Rapoport, B., Aliesky, H., Chapman, H.A. Immunology (2005) [Pubmed]
  18. Normal human immunoglobulin suppresses experimental myasthenia gravis in SCID mice. Vassilev, T., Yamamoto, M., Aissaoui, A., Bonnin, E., Berrih-Aknin, S., Kazatchkine, M.D., Kaveri, S.V. Eur. J. Immunol. (1999) [Pubmed]
  19. Experimental myasthenia gravis induced in mice by passive transfer of human myasthenic immunoglobulin. Evidence for an ameliorating effect by alpha-fetoprotein. Buschman, E., van Oers, N., Katz, M., Murgita, R.A. J. Neuroimmunol. (1987) [Pubmed]
  20. Oral administration of acetylcholine receptor: effects on experimental myasthenia gravis. Okumura, S., McIntosh, K., Drachman, D.B. Ann. Neurol. (1994) [Pubmed]
WikiGenes - Universities