The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(-/-) mouse embryos.

NKX2.1 is a homeodomain transcriptional factor expressed in thyroid, lung, and parts of the brain. We demonstrate that septation of the anterior foregut along the dorsoventral axis, into distinct tracheal and esophageal structures, is blocked in mouse embryos carrying a homozygous targeted disruption of the Nkx2.1 locus. This is consistent with the loss of Nkx2.1 expression, which defines the dorsoventral boundary within the anterior foregut in wild-type E9 embryos. Failure in septation between the trachea and the esophagus in Nkx2.1(-/-) mice leads to the formation of a common lumen that connects the pharynx to the stomach, serving both as trachea and as esophagus, similar in phenotype to a human pathologic condition termed tracheoesophageal fistula. The main-stem bronchi bifurcate from this common structure and connect to profoundly hypoplastic lungs. The mutant lungs fail to undergo normal branching embryogenesis, consist of highly dilated sacs that are not capable of sustaining normal gas exchange functions, and lead to immediate postnatal death. In situ hybridization suggests reduced Bmp-4 expression in the mutant lung epithelium, providing a possible mechanistic clue for impaired branching. Functional deletion of Nkx2. 1 blocks pulmonary-specific epithelial cell differentiation marked by the absence of pulmonary surfactant protein gene expression. Altered expression of temporally regulated genes such as Vegf demonstrates that the lung in Nkx2.1(-/-) mutant embryos is arrested at early pseudoglandular (E11-E15) stage. These results demonstrate a critical role for Nkx2.1 in morphogenesis of the anterior foregut and the lung as well as in differentiation of pulmonary epithelial cells.[1]

References

  1. Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(-/-) mouse embryos. Minoo, P., Su, G., Drum, H., Bringas, P., Kimura, S. Dev. Biol. (1999) [Pubmed]
 
WikiGenes - Universities