The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

EM-652 (SCH 57068), a third generation SERM acting as pure antiestrogen in the mammary gland and endometrium.

Breast cancer is the most frequent cancer in women while it is the second cause of cancer death. Estrogens are well recognized to play the predominant role in breast cancer development and growth and much efforts have been devoted to the blockade of estrogen formation and action. The most widely used therapy of breast cancer which has shown benefits at all stages of the disease is the use of the antiestrogen Tamoxifen. This compound, however, possesses mixed agonist and antagonist activity and major efforts have been devoted to the development of compounds having pure antiestrogenic activity in the mammary gland and endometrium. Such a compound would avoid the problem of stimulation of the endometrium and the risk of endometrial carcinoma. We have thus synthesized an orally active non-steroidal antiestrogen, EM-652 (SCH 57068) and the prodrug EM-800 (SCH57050) which are the most potent of the known antiestrogens. EM-652 is the compound having the highest affinity for the estrogen receptor, including estradiol. It has higher affinity for the ER than ICI 182780, hydroxytamoxifen, raloxifene, droloxifene and hydroxytoremifene. EM-652 has the most potent inhibitory activity on both ER alpha and ER beta compared to any of the other antiestrogens tested. An important aspect of EM-652 is that it inhibits both the AF1 and AF2 functions of both ER alpha and ER beta while the inhibitory action of hydroxytamoxifen is limited to AF2, the ligand-dependent function of the estrogen receptors. AF1 activity is constitutive, ligand-independent and is responsible for mediation of the activity of growth factors and of the ras oncogene and MAP-kinase pathway. EM-652 inhibits Ras-induced transcriptional activity of ER alpha and ER beta and blocks SRC-1-stimulated activity of the two receptors. EM-652 was also found to block the recruitment of SRC-1 at AF1 of ER beta, this ligand-independent activation of AF1 being closely related to phosphorylation of the steroid receptors by protein kinase. Most importantly, the antiestrogen hydroxytamoxifen has no inhibitory effect on the SRC-1- induced ER beta activity while the pure antiestrogen EM-652 completely abolishes this effect, thus strengthening the need to use pure antiestrogens in breast cancer therapy in order to control all known aspects of ER-regulated gene expression. In fact, the absence of blockade of AF2 by hydroxytamoxifen could explain why the benefits of tamoxifen observed up to 5 years become negative at longer time intervals and why resistance develops to tamoxifen. EM-800, the prodrug of EM-652, has been shown to prevent the development of dimethylbenz(a)anthracene (DMBA)-induced mammary carcinoma in the rat, a well-recognized model of human breast cancer. It is of interest that the addition of dehydroepiandrosterone, a precursor of androgens, to EM-800, led to complete inhibition of tumor development in this model. Not only the development, but also the growth of established DMBA-induced mammary carcinoma was inhibited by treatment with EM-800. An inhibitory effect was also observed when medroxyprogesterone was added to treatment with EM-800. Uterine size was reduced to castration levels in the groups of animals treated with EM-800. An almost complete disappearance of estrogen receptors was observed in the uterus, vaginum and tumors in nude mice treated with EM-800. EM-652 was the most potent antiestrogen to inhibit the growth of human breast cancer ZR-75-1, MCF-7 and T-47D cells in vitro when compared with ICI 182780, ICI 164384, hydroxytamoxifen, and droloxifene. Moreover, EM-652 and EM-800 have no stimulatory effect on the basal levels of cell proliferation in the absence of E2 while hydroxytamoxifen and droloxifene had a stimulatory effect on the basal growth of T-47D and ZR-75-1 cells. EM-652 was also the most potent inhibitor of the percentage of cycling cancer cells. (ABSTRACT TRUNCATED)[1]


  1. EM-652 (SCH 57068), a third generation SERM acting as pure antiestrogen in the mammary gland and endometrium. Labrie, F., Labrie, C., Bélanger, A., Simard, J., Gauthier, S., Luu-The, V., Mérand, Y., Giguere, V., Candas, B., Luo, S., Martel, C., Singh, S.M., Fournier, M., Coquet, A., Richard, V., Charbonneau, R., Charpenet, G., Tremblay, A., Tremblay, G., Cusan, L., Veilleux, R. J. Steroid Biochem. Mol. Biol. (1999) [Pubmed]
WikiGenes - Universities