The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain.

Previous studies have shown that the homeobox gene Otx2 is required first in the visceral endoderm for induction of forebrain and midbrain, and subsequently in the neurectoderm for its regional specification. Here, we demonstrate that Otx2 functions both cell autonomously and non-cell autonomously in neurectoderm cells of the forebrain and midbrain to regulate expression of region-specific homeobox and cell adhesion genes. Using chimeras containing both Otx2 mutant and wild-type cells in the brain, we observe a reduction or loss of expression of Rpx/Hesx1, Wnt1, R-cadherin and ephrin-A2 in mutant cells, whereas expression of En2 and Six3 is rescued by surrounding wild-type cells. Forebrain Otx2 mutant cells subsequently undergo apoptosis. Altogether, this study demonstrates that Otx2 is an important regulator of brain patterning and morphogenesis, through its regulation of candidate target genes such as Rpx/Hesx1, Wnt1, R-cadherin and ephrin-A2.[1]

References

  1. Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain. Rhinn, M., Dierich, A., Le Meur, M., Ang, S. Development (1999) [Pubmed]
 
WikiGenes - Universities