The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Role of redox cycling and activation by DT-diaphorase in the cytotoxicity of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB-1954) and its analogs.

In tumor cell lines with high content of DT-diaphorase (EC 1.6.99.2), the cytotoxicity of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB-1954) and its derivatives is exerted through DT-diaphorase-catalyzed formation of crosslinking species. However, little is known about other possible mechanisms of CB-1954 action. We have examined the toxicity of CB-1954 and its derivatives to bovine leukemia virus-transformed lamb fibroblasts (line FLK), which possessed moderate DT-diaphorase activity, 260 units/mg protein. The action of these compounds was accompanied by lipid peroxidation, their toxicity was decreased by desferrioxamine and antioxidant N,N'-diphenyl-p-phenylene diamine (DPPD), but, in most cases, not by dicumarol, an inhibitor of DT-diaphorase. Using multiparameter regression analysis, we have found that the toxicity of CB-1954 derivatives as well as that of several non-alkylating nitroaromatics, increased upon the increase in their single-electron reduction potential (E(1)7) and octanol/water partition coefficient (P), and almost did not depend on their reactivity towards DT-diaphorase. It seems that in cell lines with a moderate amount of DT-diaphorase, the toxicity of CB- 1954 and its analogs is exerted through their redox cycling.[1]

References

  1. Role of redox cycling and activation by DT-diaphorase in the cytotoxicity of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB-1954) and its analogs. Miŝkiniene, V., Sergediene, E., Nemeikaite, A., Segura-Aguilar, J., Cenas, N. Cancer Lett. (1999) [Pubmed]
 
WikiGenes - Universities