The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Acetyl-CoA synthetase from the amitochondriate eukaryote Giardia lamblia belongs to the newly recognized superfamily of acyl-CoA synthetases (Nucleoside diphosphate-forming).

The gene coding for the acetyl-CoA synthetase (ADP-forming) from the amitochondriate eukaryote Giardia lamblia has been expressed in Escherichia coli. The recombinant enzyme exhibited the same substrate specificity as the native enzyme, utilizing acetyl-CoA and adenine nucleotides as preferred substrates and less efficiently, propionyl- and succinyl-CoA. N- and C-terminal parts of the G. lamblia acetyl-CoA synthetase sequence were found to be homologous to the alpha- and beta-subunits, respectively, of succinyl-CoA synthetase. Sequence analysis of homologous enzymes from various bacteria, archaea, and the eukaryote, Plasmodium falciparum, identified conserved features in their organization, which allowed us to delineate a new superfamily of acyl-CoA synthetases (nucleoside diphosphate-forming) and its signature motifs. The representatives of this new superfamily of thiokinases vary in their domain arrangement, some consisting of separate alpha- and beta-subunits and others comprising fusion proteins in alpha-beta or beta-alpha orientation. The presence of homologs of acetyl-CoA synthetase (ADP-forming) in such human pathogens as G. lamblia, Yersinia pestis, Bordetella pertussis, Pseudomonas aeruginosa, Vibrio cholerae, Salmonella typhi, Porphyromonas gingivalis, and the malaria agent P. falciparum suggests that they might be used as potential drug targets.[1]

References

 
WikiGenes - Universities