The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Giardia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Giardia

 

High impact information on Giardia

 

Chemical compound and disease context of Giardia

 

Biological context of Giardia

  • Although we have documented only a single intron in Giardia, it likely has other introns and fully functional, spliceosomal machinery [15].
  • The Giardia intron contains a canonical splice site at its 3' end (AG), a noncanonical splice site at its 5' end (CT), and a branch point sequence that fits the yeast consensus sequence of TACTAAC except for the first nucleotide (AACTAAC) [15].
  • By flanking the firefly luciferase gene with the 5' and 3' untranslated regions (UTRs) of the GLV genome, transcript of the construct was synthesized in vitro with T7 polymerase and used to transfect G. lamblia WB trophozoites already infected with GLV (WBI) [16].
  • These results suggest that rRNA genes are clustered at telomeric locations in G. lamblia and that these clusters are mobile [17].
  • The deduced amino acid sequence of the giardia protein exhibits substantial homology to numerous fungal and eubacterial NADP-dependent glutamate dehydrogenases [18].
 

Anatomical context of Giardia

  • We found that G. lamblia forms novel encystation-specific secretory vesicles and can sort cyst wall proteins to a regulated secretory pathway distinct from the constitutive pathway used to transport the variable cysteine-rich protein to the trophozoite surface [19].
  • The abundance of cysteine residues suggests that the native proteins on the parasite surface may contain numerous disulfide bonds, which would promote resistance to intestinal fluid proteases and to the detergent activity of bile salts and would help to explain the survival of Giardia in the human small intestine [20].
  • A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria [21].
  • Because intestinal epithelial cells produce NO, and its stable end products, nitrite and nitrate, are detectable mainly on the apical side, we tested the hypothesis that NO production may constitute a host defense against G. lamblia [22].
  • Thus, in models of human intestinal epithelium, G. lamblia inhibited epithelial NO production by consuming arginine, the crucial substrate used by epithelial NO synthase to form NO [22].
 

Associations of Giardia with chemical compounds

 

Gene context of Giardia

  • Like a number of archaea, Giardia contains two enzymes, ProCysRS and CysRS, for Cys-tRNA formation [24].
  • Analysis of the preliminary genomic sequence of the primitive eukaryote Giardia lamblia indicated the presence of an archaeal prolyl-tRNA synthetase (ProRS) [24].
  • Human ARF5 and ARF6 and a Giardia ARF differ substantially in size and amino acid identity from other mammalian and eukaryotic ARFs but will, as befits their designation, activate cholera toxin [25].
  • BIVM, a novel gene widely distributed among deuterostomes, shares a core sequence with an unusual gene in Giardia lamblia [26].
  • IL2 and IL4 production in response to Giardia trophozoites by unfractionated PP lymphocytes were severely depressed in the retrovirus infected group, while IFN-gamma production was increased [27].
 

Analytical, diagnostic and therapeutic context of Giardia

  • All evidence presented suggests that G. lamblia guanine phosphoribosyltransferase may be qualified as a potential target for antigiardiasis chemotherapy [11].
  • Molecular cloning and characterization of a ras-related gene of ran/tc4/spi1 subfamily in Giardia lamblia [28].
  • In contrast to the variable cysteine-rich G. lamblia surface antigens described previously, GP49 was identified in Western blots of every isolate tested, as well as in subclones of a single isolate which differ in expression of a major cysteine-rich 85/66-kDa surface antigen, which does not appear to be GPI-anchored [29].
  • Proliferation was measured by 3H-thymidine incorporation; frequency of proliferation precursors, by limiting dilution analysis; interferon gamma production, by ELISA; cytotoxicity, by 51Cr release of radiolabelled giardia and by release of serine esterases by effector lymphocytes that mediate cytotoxicity [30].
  • Total DNA was isolated from the parasitic protozoan Giardia lamblia and separated into two distinct populations of different densities by centrifugation through CsCl gradients containing Hoechst dye 33258 [31].

References

  1. Giardiasis in the mouse: an animal model. Roberts-Thomson, I.C., Stevens, D.P., Mahmoud, A.A., Warren, K.S. Gastroenterology (1976) [Pubmed]
  2. Identification of a novel internal ribosome entry site in giardiavirus that extends to both sides of the initiation codon. Garlapati, S., Wang, C.C. J. Biol. Chem. (2004) [Pubmed]
  3. RNA dependent RNA polymerase activity associated with the double-stranded RNA virus of Giardia lamblia. White, T.C., Wang, C.C. Nucleic Acids Res. (1990) [Pubmed]
  4. Nonfluid therapy and selected chemoprophylaxis of acute diarrhea. Du Pont, H.L. Am. J. Med. (1985) [Pubmed]
  5. Corticosteroid treatment increases parasite numbers in murine giardiasis. Nair, K.V., Gillon, J., Ferguson, A. Gut (1981) [Pubmed]
  6. Sexual transmission of enteric protozoa and helminths in a venereal-disease-clinic population. Phillips, S.C., Mildvan, D., William, D.C., Gelb, A.M., White, M.C. N. Engl. J. Med. (1981) [Pubmed]
  7. Antigenic variation of a cysteine-rich protein in Giardia lamblia. Adam, R.D., Aggarwal, A., Lal, A.A., de La Cruz, V.F., McCutchan, T., Nash, T.E. J. Exp. Med. (1988) [Pubmed]
  8. Biology of Giardia lamblia. Detection of N-acetyl-D-glucosamine as the only surface saccharide moiety and identification of two distinct subsets of trophozoites by lectin binding. Ward, H.D., Alroy, J., Lev, B.I., Keusch, G.T., Pereira, M.E. J. Exp. Med. (1988) [Pubmed]
  9. Pyrimidine salvage in Giardia lamblia. Aldritt, S.M., Tien, P., Wang, C.C. J. Exp. Med. (1985) [Pubmed]
  10. The adenine phosphoribosyltransferase from Giardia lamblia has a unique reaction mechanism and unusual substrate binding properties. Sarver, A.E., Wang, C.C. J. Biol. Chem. (2002) [Pubmed]
  11. Purification and characterization of guanine phosphoribosyltransferase from Giardia lamblia. Aldritt, S.M., Wang, C.C. J. Biol. Chem. (1986) [Pubmed]
  12. Phenotypic and genotypic variation in Giardia lamblia isolates during chronic infection. Butcher, P.D., Cevallos, A.M., Carnaby, S., Alstead, E.M., Swarbrick, E.T., Farthing, M.J. Gut (1994) [Pubmed]
  13. Crystal structures of Giardia lamblia guanine phosphoribosyltransferase at 1.75 A(,). Shi, W., Munagala, N.R., Wang, C.C., Li, C.M., Tyler, P.C., Furneaux, R.H., Grubmeyer, C., Schramm, V.L., Almo, S.C. Biochemistry (2000) [Pubmed]
  14. Enterococcus faecium SF68 enhances the immune response to Giardia intestinalis in mice. Benyacoub, J., Pérez, P.F., Rochat, F., Saudan, K.Y., Reuteler, G., Antille, N., Humen, M., De Antoni, G.L., Cavadini, C., Blum, S., Schiffrin, E.J. J. Nutr. (2005) [Pubmed]
  15. A spliceosomal intron in Giardia lamblia. Nixon, J.E., Wang, A., Morrison, H.G., McArthur, A.G., Sogin, M.L., Loftus, B.J., Samuelson, J. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  16. Virus-mediated expression of firefly luciferase in the parasitic protozoan Giardia lamblia. Yu, D.C., Wang, A.L., Wu, C.H., Wang, C.C. Mol. Cell. Biol. (1995) [Pubmed]
  17. Telomeric location of Giardia rDNA genes. Adam, R.D., Nash, T.E., Wellems, T.E. Mol. Cell. Biol. (1991) [Pubmed]
  18. Isolation and characterization of a NADP-dependent glutamate dehydrogenase gene from the primitive eucaryote Giardia lamblia. Yee, J., Dennis, P.P. J. Biol. Chem. (1992) [Pubmed]
  19. Cell biology of the primitive eukaryote Giardia lamblia. Gillin, F.D., Reiner, D.S., McCaffery, J.M. Annu. Rev. Microbiol. (1996) [Pubmed]
  20. Isolation and expression of the gene for a major surface protein of Giardia lamblia. Gillin, F.D., Hagblom, P., Harwood, J., Aley, S.B., Reiner, D.S., McCaffery, M., So, M., Guiney, D.G. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  21. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Roger, A.J., Svärd, S.G., Tovar, J., Clark, C.G., Smith, M.W., Gillin, F.D., Sogin, M.L. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  22. Nitric oxide production by human intestinal epithelial cells and competition for arginine as potential determinants of host defense against the lumen-dwelling pathogen Giardia lamblia. Eckmann, L., Laurent, F., Langford, T.D., Hetsko, M.L., Smith, J.R., Kagnoff, M.F., Gillin, F.D. J. Immunol. (2000) [Pubmed]
  23. Purine salvage networks in Giardia lamblia. Wang, C.C., Aldritt, S. J. Exp. Med. (1983) [Pubmed]
  24. A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. Bunjun, S., Stathopoulos, C., Graham, D., Min, B., Kitabatake, M., Wang, A.L., Wang, C.C., Vivarès, C.P., Weiss, L.M., Söll, D. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  25. Human and Giardia ADP-ribosylation factors (ARFs) complement ARF function in Saccharomyces cerevisiae. Lee, F.J., Moss, J., Vaughan, M. J. Biol. Chem. (1992) [Pubmed]
  26. BIVM, a novel gene widely distributed among deuterostomes, shares a core sequence with an unusual gene in Giardia lamblia. Yoder, J.A., Hawke, N.A., Eason, D.D., Mueller, M.G., Davids, B.J., Gillin, F.D., Litman, G.W. Genomics (2002) [Pubmed]
  27. Suppression of resistance to Giardia muris and cytokine production in a murine model of acquired immune deficiency syndrome. Petro, T.M., Watson, R.R., Feely, D.E., Darban, H. Regional immunology. (1992) [Pubmed]
  28. Molecular cloning and characterization of a ras-related gene of ran/tc4/spi1 subfamily in Giardia lamblia. Chen, L.M., Chern, Y., Ong, S.J., Tai, J.H. J. Biol. Chem. (1994) [Pubmed]
  29. A surface antigen of Giardia lamblia with a glycosylphosphatidylinositol anchor. Das, S., Traynor-Kaplan, A., Reiner, D.S., Meng, T.C., Gillin, F.D. J. Biol. Chem. (1991) [Pubmed]
  30. Giardia induces proliferation and interferon gamma production by intestinal lymphocytes. Ebert, E.C. Gut (1999) [Pubmed]
  31. Characterization of two DNA populations of Giardia lamblia. Ortega-Pierres, G., Alonso, R., Cervantes, L., Montañez, C. Mol. Microbiol. (1990) [Pubmed]
 
WikiGenes - Universities