The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Large and diverse numbers of human diseases with HIKE mutations.

HIKE is a highly conserved sequence motif identified as a candidate pleckstrin-homology (PH) domain binding site in Gbeta proteins, protein kinases, ankyrin and kinesin. HIKE motifs occur also in gelsolin, neurogranin, neuromodulin and in the PH domain of Bruton tyrosin kinase ( BTK). Phosphatidylinositol-binding sequences more distantly related to HIKE are present in gelsolin, in the G protein-coupled receptor kinase 4 and in Trop-2. HIKE regions have been demonstrated to bind both proteins and lipids, and to regulate the interaction of Gbeta, neuromodulin and the BTK PH domain with downstream effectors and the cell membrane. Remarkably, mutations of the HIKE regions are common in diverse human genetic diseases. Several HIKE mutations in protein kinases lead to constitutive activation and cellular transformation, e.g. in MEN-2B, acute myeloid and mast cell leukemias, hereditary papillary renal carcinomas and multiple myeloma. Kinase-inactivating HIKE mutations cause Hirschsprung's disease, piebaldism, insulin resistance and developmental dysplasias. HIKE mutations in the PH domain of BTK lead to X-linked agammaglobulinemia, and different forms of amyloidosis are caused by mutations of HIKE-bearing molecules, for example gelsolin, Ret and Trop-2. Thus, quite diverse genetic diseases might share common molecular mechanisms. These include altered interactions of the mutated molecules with downstream effectors or the cell membrane, and defects in intracellular transport.[1]

References

  1. Large and diverse numbers of human diseases with HIKE mutations. Ciccarelli, F.D., Acciarito, A., Alberti, S. Hum. Mol. Genet. (2000) [Pubmed]
 
WikiGenes - Universities