The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts.

A prominent pathway of transforming growth factor (TGF)-beta signaling involves receptor-dependent phosphorylation of Smad2 and Smad3, which then translocate to the nucleus to activate transcription of target genes. To investigate the relative importance of these two Smad proteins in TGF-beta1 signal transduction, we have utilized a loss of function approach, based on analysis of the effects of TGF-beta1 on fibroblasts derived from mouse embryos deficient in Smad2 (S2KO) or Smad3 (S3KO). TGF-beta1 caused 50% inhibition of cellular proliferation in wild-type fibroblasts as assessed by [(3)H]thymidine incorporation, whereas the growth of S2KO or S3KO cells was only weakly inhibited by TGF-beta1. Lack of Smad2 or Smad3 expression did not affect TGF-beta1- induced fibronectin synthesis but resulted in markedly suppressed induction of plasminogen activator inhibitor-1 by TGF-beta1. Moreover, TGF-beta1- mediated induction of matrix metalloproteinase-2 was selectively dependent on Smad2, whereas induction of c-fos, Smad7, and TGF-beta1 autoinduction relied on expression of Smad3. Investigation of transcriptional activation of TGF-beta-sensitive reporter genes in the different fibroblasts showed that activation of the (Smad binding element)(4)-Lux reporter by TGF-beta1 was dependent on expression of Smad3, but not Smad2, whereas activation of the activin response element-Lux reporter was strongly suppressed in S2KO fibroblasts but, on the contrary, enhanced in S3KO cells. Our findings indicate specific roles for Smad2 and Smad3 in TGF-beta1 signaling.[1]


  1. Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. Piek, E., Ju, W.J., Heyer, J., Escalante-Alcalde, D., Stewart, C.L., Weinstein, M., Deng, C., Kucherlapati, R., Bottinger, E.P., Roberts, A.B. J. Biol. Chem. (2001) [Pubmed]
WikiGenes - Universities