The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Single-translocation and double-chimeric transcripts: detection of NUP98-HOXA9 in myeloid leukemias with HOXA11 or HOXA13 breaks of the chromosomal translocation t(7;11)(p15;p15).

It has been demonstrated that the chromosomal translocation t(7;11)(p15;p15) in patients with human acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML) invariably involves fusion of the nucleoporin gene, NUP98, on chromosome 11 and the class 1 HOX gene, HOXA9, on chromosome 7, and that the fusion gene NUP98-HOXA9 is an important gene in myeloid leukemogenesis. Here are reported 2 novel chromosome 7p15 targets of the t(7;11)(p15;p15) chromosomal translocation in 2 patients with CML and myelodysplastic syndrome (MDS). Southern blot and polymerase chain reaction (PCR) analyses of leukemia cell DNA failed to show rearrangement of HOXA9, whereas NUP98 was found to be rearranged in both cases. Reverse transcription-PCR analysis using a NUP98 primer and a degenerate primer corresponding to the third helix of the homeodomain of HOXA demonstrated that NUP98 was fused in-frame to HOXA11 in the patient with CML and to HOXA13 in the patient with MDS. The chromosomal breakpoints on 7p15 were located within introns of HOXA11 or HOXA13 genes. In both patients chimeric NUP98-HOXA9 transcripts were also observed. These findings suggest that AbdB-type HOXA genes are common targets of t(7;11)(p15;p15) chromosomal translocations and that a single translocation can produce more than one NUP98-HOXA fusion gene, presumably because of altered splicing.[1]


WikiGenes - Universities