The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Cellular lipid peroxidation end-products induce apoptosis in human lens epithelial cells.

Hydrogen peroxide (H(2)O(2)), an oxidant present in high concentrations in the aqueous humor of the elderly eyes, is known to impart toxicity to the lens---apoptosis being one of the toxic events. Since H(2)O(2) causes lipid peroxidation leading to the formation of reactive end-products, it is important to investigate whether the end-products of lipid peroxidation are involved in the oxidation-induced apoptosis in the lens. 4-Hydroxynonenal (HNE), a major cytotoxic end product of lipid peroxidation, has been shown to mediate oxidative stress-induced cell death in many cell types. It has been shown that HNE is cataractogenic in micromolar concentrations in vitro, however, the underlying mechanism is not yet clearly understood. In the present study we have demonstrated that H(2)O(2) and the lipid derived aldehydes, HNE and 4-hydroxyhexenal (HHE), can induce dose- and time-dependent loss of cell viability and a simultaneous increase in apoptosis involving activation of caspases such as caspase-1, -2, -3, and -8 in the cultured human lens epithelial cells. Interestingly, we observed that Z-VAD, a broad range inhibitor of caspases, conferred protection against H(2)O(2)- and HNE-induced apoptosis, suggesting the involvement of caspases in this apoptotic system. Using the cationic dye JC-1, early apoptotic changes were assessed following 5 h of HNE and H(2)O(2) insult. Though HNE exposure resulted in approximately 50% cells to undergo early apoptotic changes, no such changes were observed in H(2)O(2) treated cells during this period. Furthermore, apoptosis, as determined by quantifying the DNA fragmentation, was apparent at a much earlier time period by HNE as opposed to H(2)O(2). Taken together, the results demonstrate the apoptotic potential of the lipid peroxidation end-products and suggest that H(2)O(2)-induced apoptosis may be mediated by these end-products in the lens epithelium.[1]


  1. Cellular lipid peroxidation end-products induce apoptosis in human lens epithelial cells. Choudhary, S., Zhang, W., Zhou, F., Campbell, G.A., Chan, L.L., Thompson, E.B., Ansari, N.H. Free Radic. Biol. Med. (2002) [Pubmed]
WikiGenes - Universities