Seasonal changes in testicular steroidogenesis in the toad Bufo arenarum H.
The biosynthesis of androgens in Bufo arenarum takes place through the 5-ene pathway that includes 5-androstane-3beta,17beta-diol as intermediate in testosterone biosynthesis. Besides testosterone and 5alpha-dihydrotestosterone, testes are able to synthesize 5alpha-pregnan-3,20-dione and several 3alpha- and 20alpha-reduced derivatives. Steroid biosynthesis changes during the breeding period (spring and early summer), turning from androgen to C21 steroid production. During the reproductive season, the production of progesterone, 5alpha-pregnan-3alpha,20alpha-diol, 3alpha-hydroxy-5alpha-pregnan-20-one, and 5alpha-pregnan-3,20-dione increases significantly. The function of most of these steroids in amphibians remains unknown. However, 5alpha-androstan-3alpha,17beta-diol and 3alpha-hydroxy-5alpha-pregnan-20-one were shown to be neuroactive in mammals, modulating sexual behavior. Thus, 5alpha/3alpha-reduced steroids could be involved in the regulation of the reproductive behavior in B. arenarum, a species with a dissociated reproductive pattern. Percentage contribution of each enzymes to the total metabolism reveals that neither 3beta-hydroxysteroid dehydrogenase/isomerase nor 5alpha-reductase change throughout the reproductive cycle. However, a strong reduction in 17-hydroxylase-C(17-20) lyase activity occurs in the reproductive season, suggesting that this enzyme could represent a key enzyme in the regulation of the seasonal change of steroidogenesis. Also, 3alpha-hydroxysteroid dehydrogenase and 20-hydroxysteroid dehydrogenase activities increase during the reproductive period, implying that steroid metabolism is clearly focused on C21-reduced steroids.[1]References
- Seasonal changes in testicular steroidogenesis in the toad Bufo arenarum H. Canosa, L.F., Ceballos, N.R. Gen. Comp. Endocrinol. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg